"llvm/git@repo.hca.bsc.es:rferrer/llvm-epi-0.8.git" did not exist on "0b26a616ebf064e0b9d12c0b68bb66a641a16031"
Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
DEBUG(dbgs() << ", creating local interval.\n");
unsigned LocalIntv = SE->openIntv();
// We may be creating copies directly between MainIntv and LocalIntv,
// bypassing the stack interval. When we do that, we should never use the
// leaveIntv* methods as they define values in the stack interval. By
// starting from the end of the block and working our way backwards, we can
// get by with only enterIntv* methods.
//
// When selecting split points, we generally try to maximize the stack
// interval as long at it contains no uses, maximize the main interval as
// long as it doesn't overlap interference, and minimize the local interval
// that we don't know how to allocate yet.
// Handle the block exit, set Pos to the first handled slot.
SlotIndex Pos = BI.LastUse;
if (RegOut) {
assert(Intf.last() < LastSplitPoint && "Cannot be live-out in register");
// Create a snippet of MainIntv that is live-out.
//
// ~~~ Interference overlapping uses.
// --o---| Live-out in MainIntv.
// ----=== Switch from LocalIntv to MainIntv after interference.
//
SE->selectIntv(MainIntv);
Pos = SE->enterIntvAfter(Intf.last());
assert(Pos >= Intf.last() && "Expected to avoid interference");
SE->useIntv(Pos, Stop);
SE->selectIntv(LocalIntv);
} else if (BI.LiveOut) {
if (BI.LastUse < LastSplitPoint) {
// Live-out on the stack.
//
// ~~~ Interference overlapping uses.
// --o---| Live-out on stack.
// ---____ Switch from LocalIntv to stack after last use.
//
Pos = SE->leaveIntvAfter(BI.LastUse);
} else {
// Live-out on the stack, last use after last split point.
//
// ~~~ Interference overlapping uses.
// --o--o| Live-out on stack, late use.
// ------ Copy to stack before LSP, overlap LocalIntv.
// \__
//
Pos = SE->leaveIntvBefore(LastSplitPoint);
// We need to overlap LocalIntv so it can reach LastUse.
SE->overlapIntv(Pos, BI.LastUse);
}
}
// When not live-out, leave Pos at LastUse. We have handled everything from
// Pos to Stop. Find the starting point for LocalIntv.
assert(SE->currentIntv() == LocalIntv && "Expecting local interval");
if (RegIn) {
assert(Start < Intf.first() && "Cannot be live-in with interference");
// Live-in in MainIntv, only use LocalIntv for interference.
//
// ~~~ Interference overlapping uses.
// |---o-- Live-in in MainIntv.
// ====--- Switch to LocalIntv before interference.
//
SlotIndex Switch = SE->enterIntvBefore(std::min(Pos, Intf.first()));
assert(Switch <= Intf.first() && "Expected to avoid interference");
SE->useIntv(Switch, Pos);
SE->selectIntv(MainIntv);
SE->useIntv(Start, Switch);
} else {
// Live-in on stack, enter LocalIntv before first use.
//
// ~~~ Interference overlapping uses.
// |---o-- Live-in in MainIntv.
// ____--- Reload to LocalIntv before interference.
//
// Defined in block.
//
// ~~~ Interference overlapping uses.
// | o-- Defined in block.
// --- Begin LocalIntv at first use.
//
SlotIndex Switch = SE->enterIntvBefore(std::min(Pos, BI.FirstUse));
SE->useIntv(Switch, Pos);
}
}
Jakob Stoklund Olesen
committed
// Handle live-through blocks.
SE->selectIntv(MainIntv);
for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
unsigned Number = Cand.ActiveBlocks[i];
Jakob Stoklund Olesen
committed
bool RegIn = LiveBundles[Bundles->getBundle(Number, 0)];
bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
DEBUG(dbgs() << "Live through BB#" << Number << '\n');
if (RegIn && RegOut) {
Intf.moveToBlock(Number);
if (!Intf.hasInterference()) {
SE->useIntv(Indexes->getMBBStartIdx(Number),
Indexes->getMBBEndIdx(Number));
continue;
}
}
MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
if (RegIn)
SE->leaveIntvAtTop(*MBB);
if (RegOut)
SE->enterIntvAtEnd(*MBB);
}
Jakob Stoklund Olesen
committed
SmallVector<unsigned, 8> IntvMap;
SE->finish(&IntvMap);
DebugVars->splitRegister(VirtReg.reg, LREdit.regs());
ExtraRegInfo.resize(MRI->getNumVirtRegs());
unsigned OrigBlocks = SA->getNumLiveBlocks();
Jakob Stoklund Olesen
committed
// Sort out the new intervals created by splitting. We get four kinds:
// - Remainder intervals should not be split again.
// - Candidate intervals can be assigned to Cand.PhysReg.
// - Block-local splits are candidates for local splitting.
// - DCE leftovers should go back on the queue.
for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
LiveInterval &Reg = *LREdit.get(i);
Jakob Stoklund Olesen
committed
// Ignore old intervals from DCE.
if (getStage(Reg) != RS_New)
Jakob Stoklund Olesen
committed
continue;
// Remainder interval. Don't try splitting again, spill if it doesn't
// allocate.
if (IntvMap[i] == 0) {
setStage(Reg, RS_Global);
Jakob Stoklund Olesen
committed
continue;
}
// Main interval. Allow repeated splitting as long as the number of live
// blocks is strictly decreasing.
if (IntvMap[i] == MainIntv) {
if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
<< " blocks as original.\n");
// Don't allow repeated splitting as a safe guard against looping.
setStage(Reg, RS_Global);
}
continue;
}
// Other intervals are treated as new. This includes local intervals created
// for blocks with multiple uses, and anything created by DCE.
Jakob Stoklund Olesen
committed
}
if (VerifyEnabled)
MF->verify(this, "After splitting live range around region");
}
unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
SmallVectorImpl<LiveInterval*> &NewVRegs) {
Jakob Stoklund Olesen
committed
float BestCost = Hysteresis * calcSpillCost();
DEBUG(dbgs() << "Cost of isolating all blocks = " << BestCost << '\n');
const unsigned NoCand = ~0u;
unsigned BestCand = NoCand;
Jakob Stoklund Olesen
committed
Order.rewind();
Jakob Stoklund Olesen
committed
for (unsigned Cand = 0; unsigned PhysReg = Order.next(); ++Cand) {
if (GlobalCand.size() <= Cand)
GlobalCand.resize(Cand+1);
Jakob Stoklund Olesen
committed
SpillPlacer->prepare(GlobalCand[Cand].LiveBundles);
Jakob Stoklund Olesen
committed
float Cost;
Jakob Stoklund Olesen
committed
InterferenceCache::Cursor Intf(IntfCache, PhysReg);
if (!addSplitConstraints(Intf, Cost)) {
DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n");
Jakob Stoklund Olesen
committed
continue;
}
Jakob Stoklund Olesen
committed
DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = " << Cost);
Jakob Stoklund Olesen
committed
if (Cost >= BestCost) {
DEBUG({
if (BestCand == NoCand)
dbgs() << " worse than no bundles\n";
else
dbgs() << " worse than "
<< PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
});
continue;
Jakob Stoklund Olesen
committed
SpillPlacer->finish();
// No live bundles, defer to splitSingleBlocks().
if (!GlobalCand[Cand].LiveBundles.any()) {
DEBUG(dbgs() << " no bundles.\n");
continue;
Cost += calcGlobalSplitCost(GlobalCand[Cand], Intf);
DEBUG({
dbgs() << ", total = " << Cost << " with bundles";
for (int i = GlobalCand[Cand].LiveBundles.find_first(); i>=0;
i = GlobalCand[Cand].LiveBundles.find_next(i))
dbgs() << " EB#" << i;
dbgs() << ".\n";
});
Jakob Stoklund Olesen
committed
if (Cost < BestCost) {
Jakob Stoklund Olesen
committed
BestCost = Hysteresis * Cost; // Prevent rounding effects.
}
}
return 0;
splitAroundRegion(VirtReg, GlobalCand[BestCand], NewVRegs);
return 0;
}
//===----------------------------------------------------------------------===//
// Local Splitting
//===----------------------------------------------------------------------===//
/// calcGapWeights - Compute the maximum spill weight that needs to be evicted
/// in order to use PhysReg between two entries in SA->UseSlots.
///
/// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
///
void RAGreedy::calcGapWeights(unsigned PhysReg,
SmallVectorImpl<float> &GapWeight) {
Jakob Stoklund Olesen
committed
assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
const unsigned NumGaps = Uses.size()-1;
// Start and end points for the interference check.
SlotIndex StartIdx = BI.LiveIn ? BI.FirstUse.getBaseIndex() : BI.FirstUse;
SlotIndex StopIdx = BI.LiveOut ? BI.LastUse.getBoundaryIndex() : BI.LastUse;
GapWeight.assign(NumGaps, 0.0f);
// Add interference from each overlapping register.
for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) {
if (!query(const_cast<LiveInterval&>(SA->getParent()), *AI)
.checkInterference())
continue;
// We know that VirtReg is a continuous interval from FirstUse to LastUse,
// so we don't need InterferenceQuery.
//
// Interference that overlaps an instruction is counted in both gaps
// surrounding the instruction. The exception is interference before
// StartIdx and after StopIdx.
//
LiveIntervalUnion::SegmentIter IntI = PhysReg2LiveUnion[*AI].find(StartIdx);
for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
// Skip the gaps before IntI.
while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
if (++Gap == NumGaps)
break;
if (Gap == NumGaps)
break;
// Update the gaps covered by IntI.
const float weight = IntI.value()->weight;
for (; Gap != NumGaps; ++Gap) {
GapWeight[Gap] = std::max(GapWeight[Gap], weight);
if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
break;
}
if (Gap == NumGaps)
break;
}
}
}
/// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
/// basic block.
///
unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
SmallVectorImpl<LiveInterval*> &NewVRegs) {
Jakob Stoklund Olesen
committed
assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
// Note that it is possible to have an interval that is live-in or live-out
// while only covering a single block - A phi-def can use undef values from
// predecessors, and the block could be a single-block loop.
// We don't bother doing anything clever about such a case, we simply assume
// that the interval is continuous from FirstUse to LastUse. We should make
// sure that we don't do anything illegal to such an interval, though.
const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
if (Uses.size() <= 2)
return 0;
const unsigned NumGaps = Uses.size()-1;
DEBUG({
dbgs() << "tryLocalSplit: ";
for (unsigned i = 0, e = Uses.size(); i != e; ++i)
dbgs() << ' ' << SA->UseSlots[i];
dbgs() << '\n';
});
// Since we allow local split results to be split again, there is a risk of
// creating infinite loops. It is tempting to require that the new live
// ranges have less instructions than the original. That would guarantee
// convergence, but it is too strict. A live range with 3 instructions can be
// split 2+3 (including the COPY), and we want to allow that.
//
// Instead we use these rules:
//
// 1. Allow any split for ranges with getStage() < RS_Local. (Except for the
// noop split, of course).
// 2. Require progress be made for ranges with getStage() >= RS_Local. All
// the new ranges must have fewer instructions than before the split.
// 3. New ranges with the same number of instructions are marked RS_Local,
// smaller ranges are marked RS_New.
//
// These rules allow a 3 -> 2+3 split once, which we need. They also prevent
// excessive splitting and infinite loops.
//
bool ProgressRequired = getStage(VirtReg) >= RS_Local;
// Best split candidate.
unsigned BestBefore = NumGaps;
unsigned BestAfter = 0;
float BestDiff = 0;
const float blockFreq = SpillPlacer->getBlockFrequency(BI.MBB->getNumber());
SmallVector<float, 8> GapWeight;
Order.rewind();
while (unsigned PhysReg = Order.next()) {
// Keep track of the largest spill weight that would need to be evicted in
// order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
calcGapWeights(PhysReg, GapWeight);
// Try to find the best sequence of gaps to close.
// The new spill weight must be larger than any gap interference.
// We will split before Uses[SplitBefore] and after Uses[SplitAfter].
unsigned SplitBefore = 0, SplitAfter = 1;
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
// MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
// It is the spill weight that needs to be evicted.
float MaxGap = GapWeight[0];
for (;;) {
// Live before/after split?
const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
<< Uses[SplitBefore] << '-' << Uses[SplitAfter]
<< " i=" << MaxGap);
// Stop before the interval gets so big we wouldn't be making progress.
if (!LiveBefore && !LiveAfter) {
DEBUG(dbgs() << " all\n");
break;
}
// Should the interval be extended or shrunk?
bool Shrink = true;
// How many gaps would the new range have?
unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
// Legally, without causing looping?
bool Legal = !ProgressRequired || NewGaps < NumGaps;
if (Legal && MaxGap < HUGE_VALF) {
// Estimate the new spill weight. Each instruction reads or writes the
// register. Conservatively assume there are no read-modify-write
// instructions.
// Try to guess the size of the new interval.
const float EstWeight = normalizeSpillWeight(blockFreq * (NewGaps + 1),
Uses[SplitBefore].distance(Uses[SplitAfter]) +
(LiveBefore + LiveAfter)*SlotIndex::InstrDist);
// Would this split be possible to allocate?
// Never allocate all gaps, we wouldn't be making progress.
DEBUG(dbgs() << " w=" << EstWeight);
if (EstWeight * Hysteresis >= MaxGap) {
float Diff = EstWeight - MaxGap;
if (Diff > BestDiff) {
DEBUG(dbgs() << " (best)");
BestDiff = Hysteresis * Diff;
BestBefore = SplitBefore;
BestAfter = SplitAfter;
}
}
}
// Try to shrink.
if (Shrink) {
if (++SplitBefore < SplitAfter) {
DEBUG(dbgs() << " shrink\n");
// Recompute the max when necessary.
if (GapWeight[SplitBefore - 1] >= MaxGap) {
MaxGap = GapWeight[SplitBefore];
for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
MaxGap = std::max(MaxGap, GapWeight[i]);
}
continue;
}
MaxGap = 0;
}
// Try to extend the interval.
if (SplitAfter >= NumGaps) {
DEBUG(dbgs() << " end\n");
break;
}
DEBUG(dbgs() << " extend\n");
MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
}
}
// Didn't find any candidates?
if (BestBefore == NumGaps)
return 0;
DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
<< '-' << Uses[BestAfter] << ", " << BestDiff
<< ", " << (BestAfter - BestBefore + 1) << " instrs\n");
LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
Jakob Stoklund Olesen
committed
SE->reset(LREdit);
SE->openIntv();
SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]);
SE->useIntv(SegStart, SegStop);
SmallVector<unsigned, 8> IntvMap;
SE->finish(&IntvMap);
DebugVars->splitRegister(VirtReg.reg, LREdit.regs());
// If the new range has the same number of instructions as before, mark it as
// RS_Local so the next split will be forced to make progress. Otherwise,
// leave the new intervals as RS_New so they can compete.
bool LiveBefore = BestBefore != 0 || BI.LiveIn;
bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
if (NewGaps >= NumGaps) {
DEBUG(dbgs() << "Tagging non-progress ranges: ");
assert(!ProgressRequired && "Didn't make progress when it was required.");
for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
if (IntvMap[i] == 1) {
setStage(*LREdit.get(i), RS_Local);
DEBUG(dbgs() << PrintReg(LREdit.get(i)->reg));
}
DEBUG(dbgs() << '\n');
}
//===----------------------------------------------------------------------===//
// Live Range Splitting
//===----------------------------------------------------------------------===//
/// trySplit - Try to split VirtReg or one of its interferences, making it
/// assignable.
/// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
SmallVectorImpl<LiveInterval*>&NewVRegs) {
// Local intervals are handled separately.
if (LIS->intervalIsInOneMBB(VirtReg)) {
NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
Jakob Stoklund Olesen
committed
SA->analyze(&VirtReg);
return tryLocalSplit(VirtReg, Order, NewVRegs);
}
NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);
Jakob Stoklund Olesen
committed
// Don't iterate global splitting.
// Move straight to spilling if this range was produced by a global split.
if (getStage(VirtReg) >= RS_Global)
Jakob Stoklund Olesen
committed
return 0;
SA->analyze(&VirtReg);
// FIXME: SplitAnalysis may repair broken live ranges coming from the
// coalescer. That may cause the range to become allocatable which means that
// tryRegionSplit won't be making progress. This check should be replaced with
// an assertion when the coalescer is fixed.
if (SA->didRepairRange()) {
// VirtReg has changed, so all cached queries are invalid.
Jakob Stoklund Olesen
committed
invalidateVirtRegs();
if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
return PhysReg;
}
// First try to split around a region spanning multiple blocks.
unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
if (PhysReg || !NewVRegs.empty())
return PhysReg;
// Then isolate blocks with multiple uses.
SplitAnalysis::BlockPtrSet Blocks;
if (SA->getMultiUseBlocks(Blocks)) {
LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
SE->reset(LREdit);
SE->splitSingleBlocks(Blocks);
setStage(NewVRegs.begin(), NewVRegs.end(), RS_Global);
if (VerifyEnabled)
MF->verify(this, "After splitting live range around basic blocks");
}
// Don't assign any physregs.
return 0;
}
Jakob Stoklund Olesen
committed
//===----------------------------------------------------------------------===//
// Main Entry Point
//===----------------------------------------------------------------------===//
unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
SmallVectorImpl<LiveInterval*> &NewVRegs) {
Jakob Stoklund Olesen
committed
// First try assigning a free register.
Jakob Stoklund Olesen
committed
AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo);
if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
return PhysReg;
LiveRangeStage Stage = getStage(VirtReg);
DEBUG(dbgs() << StageName[Stage]
<< " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
Jakob Stoklund Olesen
committed
// Try to evict a less worthy live range, but only for ranges from the primary
// queue. The RS_Second ranges already failed to do this, and they should not
// get a second chance until they have been split.
if (Stage != RS_Second)
if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs))
return PhysReg;
assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");
// The first time we see a live range, don't try to split or spill.
// Wait until the second time, when all smaller ranges have been allocated.
// This gives a better picture of the interference to split around.
if (Stage == RS_First) {
setStage(VirtReg, RS_Second);
NewVRegs.push_back(&VirtReg);
return 0;
}
Jakob Stoklund Olesen
committed
// If we couldn't allocate a register from spilling, there is probably some
// invalid inline assembly. The base class wil report it.
if (Stage >= RS_Spill)
return ~0u;
Jakob Stoklund Olesen
committed
Jakob Stoklund Olesen
committed
// Try splitting VirtReg or interferences.
unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
if (PhysReg || !NewVRegs.empty())
Jakob Stoklund Olesen
committed
// Finally spill VirtReg itself.
NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
LiveRangeEdit LRE(VirtReg, NewVRegs, this);
spiller().spill(LRE);
Jakob Stoklund Olesen
committed
setStage(NewVRegs.begin(), NewVRegs.end(), RS_Spill);
if (VerifyEnabled)
MF->verify(this, "After spilling");
// The live virtual register requesting allocation was spilled, so tell
// the caller not to allocate anything during this round.
return 0;
}
bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
<< "********** Function: "
<< ((Value*)mf.getFunction())->getName() << '\n');
MF = &mf;
Jakob Stoklund Olesen
committed
if (VerifyEnabled)
MF->verify(this, "Before greedy register allocator");
Jakob Stoklund Olesen
committed
RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());
Indexes = &getAnalysis<SlotIndexes>();
DomTree = &getAnalysis<MachineDominatorTree>();
Jakob Stoklund Olesen
committed
SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
Jakob Stoklund Olesen
committed
Loops = &getAnalysis<MachineLoopInfo>();
LoopRanges = &getAnalysis<MachineLoopRanges>();
Bundles = &getAnalysis<EdgeBundles>();
SpillPlacer = &getAnalysis<SpillPlacement>();
DebugVars = &getAnalysis<LiveDebugVariables>();
Jakob Stoklund Olesen
committed
SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
Jakob Stoklund Olesen
committed
SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree));
ExtraRegInfo.clear();
ExtraRegInfo.resize(MRI->getNumVirtRegs());
NextCascade = 1;
IntfCache.init(MF, &PhysReg2LiveUnion[0], Indexes, TRI);
Jakob Stoklund Olesen
committed
allocatePhysRegs();
addMBBLiveIns(MF);
Jakob Stoklund Olesen
committed
LIS->addKillFlags();
Jakob Stoklund Olesen
committed
{
NamedRegionTimer T("Rewriter", TimerGroupName, TimePassesIsEnabled);
Jakob Stoklund Olesen
committed
VRM->rewrite(Indexes);
Jakob Stoklund Olesen
committed
}
// Write out new DBG_VALUE instructions.
DebugVars->emitDebugValues(VRM);
// The pass output is in VirtRegMap. Release all the transient data.
releaseMemory();
return true;
}