Newer
Older
// virtual register. Once the coalescing is done, it cannot be broken and
// these are not spillable! If the destination interval uses are far away,
// think twice about coalescing them!
if (!mopd->isDead() && (SrcIsPhys || DstIsPhys)) {
LiveInterval &JoinVInt = SrcIsPhys ? DstInt : SrcInt;
unsigned JoinVReg = SrcIsPhys ? repDstReg : repSrcReg;
unsigned JoinPReg = SrcIsPhys ? repSrcReg : repDstReg;
const TargetRegisterClass *RC = mf_->getSSARegMap()->getRegClass(JoinVReg);
unsigned Threshold = allocatableRCRegs_[RC].count();
// If the virtual register live interval is long has it has low use desity,
// do not join them, instead mark the physical register as its allocation
// preference.
unsigned Length = JoinVInt.getSize() / InstrSlots::NUM;
LiveVariables::VarInfo &vi = lv_->getVarInfo(JoinVReg);
if (Length > Threshold &&
(((float)vi.NumUses / Length) < (1.0 / Threshold))) {
JoinVInt.preference = JoinPReg;
++numAborts;
DOUT << "\tMay tie down a physical register, abort!\n";
return false;
}
}
// Okay, attempt to join these two intervals. On failure, this returns false.
// Otherwise, if one of the intervals being joined is a physreg, this method
// always canonicalizes DstInt to be it. The output "SrcInt" will not have
// been modified, so we can use this information below to update aliases.
if (JoinIntervals(DstInt, SrcInt)) {
if (isDead) {
// Result of the copy is dead. Propagate this property.
if (SrcStart == 0) {
assert(MRegisterInfo::isPhysicalRegister(repSrcReg) &&
"Live-in must be a physical register!");
// Live-in to the function but dead. Remove it from entry live-in set.
// JoinIntervals may end up swapping the two intervals.
} else {
MachineInstr *SrcMI = getInstructionFromIndex(SrcStart);
if (SrcMI) {
MachineOperand *mops = findDefOperand(SrcMI, repSrcReg);
if (mops)
mops->setIsDead();
}
}
}
Evan Cheng
committed
if (isShorten || isDead) {
Evan Cheng
committed
// Shorten the live interval.
LiveInterval &LiveInInt = (repSrcReg == DstInt.reg) ? DstInt : SrcInt;
LiveInInt.removeRange(RemoveStart, RemoveEnd);
Evan Cheng
committed
}
// Coallescing failed.
// If we can eliminate the copy without merging the live ranges, do so now.
if (AdjustCopiesBackFrom(SrcInt, DstInt, CopyMI))
return true;
Chris Lattner
committed
// Otherwise, we are unable to join the intervals.
DOUT << "Interference!\n";
Chris Lattner
committed
return false;
}
bool Swapped = repSrcReg == DstInt.reg;
if (Swapped)
std::swap(repSrcReg, repDstReg);
assert(MRegisterInfo::isVirtualRegister(repSrcReg) &&
"LiveInterval::join didn't work right!");
// If we're about to merge live ranges into a physical register live range,
// we have to update any aliased register's live ranges to indicate that they
// have clobbered values for this range.
if (MRegisterInfo::isPhysicalRegister(repDstReg)) {
Evan Cheng
committed
if (!DstInt.containsOneValue()) {
for (LiveInterval::Ranges::const_iterator I = SrcInt.begin(),
E = SrcInt.end(); I != E; ++I)
unsetRegisterKills(I->start, I->end, repDstReg);
}
// Update the liveintervals of sub-registers.
for (const unsigned *AS = mri_->getSubRegisters(repDstReg); *AS; ++AS)
getInterval(*AS).MergeInClobberRanges(SrcInt);
} else {
// Merge use info if the destination is a virtual register.
LiveVariables::VarInfo& dVI = lv_->getVarInfo(repDstReg);
LiveVariables::VarInfo& sVI = lv_->getVarInfo(repSrcReg);
dVI.NumUses += sVI.NumUses;
}
DOUT << "\n\t\tJoined. Result = "; DstInt.print(DOUT, mri_);
Evan Cheng
committed
Evan Cheng
committed
// Remember these liveintervals have been joined.
JoinedLIs.set(repSrcReg - MRegisterInfo::FirstVirtualRegister);
if (MRegisterInfo::isVirtualRegister(repDstReg))
JoinedLIs.set(repDstReg - MRegisterInfo::FirstVirtualRegister);
Evan Cheng
committed
// If the intervals were swapped by Join, swap them back so that the register
// mapping (in the r2i map) is correct.
if (Swapped) SrcInt.swap(DstInt);
removeInterval(repSrcReg);
r2rMap_[repSrcReg] = repDstReg;
// Finally, delete the copy instruction.
RemoveMachineInstrFromMaps(CopyMI);
CopyMI->eraseFromParent();
++numPeep;
Chris Lattner
committed
++numJoins;
return true;
/// ComputeUltimateVN - Assuming we are going to join two live intervals,
/// compute what the resultant value numbers for each value in the input two
/// ranges will be. This is complicated by copies between the two which can
/// and will commonly cause multiple value numbers to be merged into one.
///
/// VN is the value number that we're trying to resolve. InstDefiningValue
/// keeps track of the new InstDefiningValue assignment for the result
/// LiveInterval. ThisFromOther/OtherFromThis are sets that keep track of
/// whether a value in this or other is a copy from the opposite set.
/// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
/// already been assigned.
///
/// ThisFromOther[x] - If x is defined as a copy from the other interval, this
/// contains the value number the copy is from.
///
static unsigned ComputeUltimateVN(unsigned VN,
Chris Lattner
committed
SmallVector<std::pair<unsigned,
unsigned>, 16> &ValueNumberInfo,
SmallVector<int, 16> &ThisFromOther,
SmallVector<int, 16> &OtherFromThis,
SmallVector<int, 16> &ThisValNoAssignments,
SmallVector<int, 16> &OtherValNoAssignments,
LiveInterval &ThisLI, LiveInterval &OtherLI) {
// If the VN has already been computed, just return it.
if (ThisValNoAssignments[VN] >= 0)
return ThisValNoAssignments[VN];
Chris Lattner
committed
// assert(ThisValNoAssignments[VN] != -2 && "Cyclic case?");
// If this val is not a copy from the other val, then it must be a new value
// number in the destination.
int OtherValNo = ThisFromOther[VN];
if (OtherValNo == -1) {
Chris Lattner
committed
ValueNumberInfo.push_back(ThisLI.getValNumInfo(VN));
return ThisValNoAssignments[VN] = ValueNumberInfo.size()-1;
}
Chris Lattner
committed
// Otherwise, this *is* a copy from the RHS. If the other side has already
// been computed, return it.
if (OtherValNoAssignments[OtherValNo] >= 0)
return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo];
// Mark this value number as currently being computed, then ask what the
// ultimate value # of the other value is.
ThisValNoAssignments[VN] = -2;
unsigned UltimateVN =
Chris Lattner
committed
ComputeUltimateVN(OtherValNo, ValueNumberInfo,
OtherFromThis, ThisFromOther,
OtherValNoAssignments, ThisValNoAssignments,
OtherLI, ThisLI);
return ThisValNoAssignments[VN] = UltimateVN;
}
Chris Lattner
committed
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
static bool InVector(unsigned Val, const SmallVector<unsigned, 8> &V) {
return std::find(V.begin(), V.end(), Val) != V.end();
}
/// SimpleJoin - Attempt to joint the specified interval into this one. The
/// caller of this method must guarantee that the RHS only contains a single
/// value number and that the RHS is not defined by a copy from this
/// interval. This returns false if the intervals are not joinable, or it
/// joins them and returns true.
bool LiveIntervals::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS) {
assert(RHS.containsOneValue());
// Some number (potentially more than one) value numbers in the current
// interval may be defined as copies from the RHS. Scan the overlapping
// portions of the LHS and RHS, keeping track of this and looking for
// overlapping live ranges that are NOT defined as copies. If these exist, we
// cannot coallesce.
LiveInterval::iterator LHSIt = LHS.begin(), LHSEnd = LHS.end();
LiveInterval::iterator RHSIt = RHS.begin(), RHSEnd = RHS.end();
if (LHSIt->start < RHSIt->start) {
LHSIt = std::upper_bound(LHSIt, LHSEnd, RHSIt->start);
if (LHSIt != LHS.begin()) --LHSIt;
} else if (RHSIt->start < LHSIt->start) {
RHSIt = std::upper_bound(RHSIt, RHSEnd, LHSIt->start);
if (RHSIt != RHS.begin()) --RHSIt;
}
SmallVector<unsigned, 8> EliminatedLHSVals;
while (1) {
// Determine if these live intervals overlap.
bool Overlaps = false;
if (LHSIt->start <= RHSIt->start)
Overlaps = LHSIt->end > RHSIt->start;
else
Overlaps = RHSIt->end > LHSIt->start;
// If the live intervals overlap, there are two interesting cases: if the
// LHS interval is defined by a copy from the RHS, it's ok and we record
// that the LHS value # is the same as the RHS. If it's not, then we cannot
// coallesce these live ranges and we bail out.
if (Overlaps) {
// If we haven't already recorded that this value # is safe, check it.
if (!InVector(LHSIt->ValId, EliminatedLHSVals)) {
// Copy from the RHS?
unsigned SrcReg = LHS.getSrcRegForValNum(LHSIt->ValId);
if (rep(SrcReg) != RHS.reg)
return false; // Nope, bail out.
EliminatedLHSVals.push_back(LHSIt->ValId);
}
// We know this entire LHS live range is okay, so skip it now.
if (++LHSIt == LHSEnd) break;
continue;
}
if (LHSIt->end < RHSIt->end) {
if (++LHSIt == LHSEnd) break;
} else {
// One interesting case to check here. It's possible that we have
// something like "X3 = Y" which defines a new value number in the LHS,
// and is the last use of this liverange of the RHS. In this case, we
// want to notice this copy (so that it gets coallesced away) even though
// the live ranges don't actually overlap.
if (LHSIt->start == RHSIt->end) {
if (InVector(LHSIt->ValId, EliminatedLHSVals)) {
// We already know that this value number is going to be merged in
// if coallescing succeeds. Just skip the liverange.
if (++LHSIt == LHSEnd) break;
} else {
// Otherwise, if this is a copy from the RHS, mark it as being merged
// in.
if (rep(LHS.getSrcRegForValNum(LHSIt->ValId)) == RHS.reg) {
EliminatedLHSVals.push_back(LHSIt->ValId);
// We know this entire LHS live range is okay, so skip it now.
if (++LHSIt == LHSEnd) break;
}
}
}
if (++RHSIt == RHSEnd) break;
}
}
// If we got here, we know that the coallescing will be successful and that
// the value numbers in EliminatedLHSVals will all be merged together. Since
// the most common case is that EliminatedLHSVals has a single number, we
// optimize for it: if there is more than one value, we merge them all into
// the lowest numbered one, then handle the interval as if we were merging
// with one value number.
unsigned LHSValNo;
if (EliminatedLHSVals.size() > 1) {
// Loop through all the equal value numbers merging them into the smallest
// one.
unsigned Smallest = EliminatedLHSVals[0];
for (unsigned i = 1, e = EliminatedLHSVals.size(); i != e; ++i) {
if (EliminatedLHSVals[i] < Smallest) {
// Merge the current notion of the smallest into the smaller one.
LHS.MergeValueNumberInto(Smallest, EliminatedLHSVals[i]);
Smallest = EliminatedLHSVals[i];
} else {
// Merge into the smallest.
LHS.MergeValueNumberInto(EliminatedLHSVals[i], Smallest);
}
}
LHSValNo = Smallest;
} else {
assert(!EliminatedLHSVals.empty() && "No copies from the RHS?");
LHSValNo = EliminatedLHSVals[0];
}
// Okay, now that there is a single LHS value number that we're merging the
// RHS into, update the value number info for the LHS to indicate that the
// value number is defined where the RHS value number was.
LHS.setValueNumberInfo(LHSValNo, RHS.getValNumInfo(0));
// Okay, the final step is to loop over the RHS live intervals, adding them to
// the LHS.
LHS.MergeRangesInAsValue(RHS, LHSValNo);
LHS.weight += RHS.weight;
if (RHS.preference && !LHS.preference)
LHS.preference = RHS.preference;
Chris Lattner
committed
return true;
}
/// JoinIntervals - Attempt to join these two intervals. On failure, this
/// returns false. Otherwise, if one of the intervals being joined is a
/// physreg, this method always canonicalizes LHS to be it. The output
/// "RHS" will not have been modified, so we can use this information
/// below to update aliases.
bool LiveIntervals::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS) {
// Compute the final value assignment, assuming that the live ranges can be
// coallesced.
SmallVector<int, 16> LHSValNoAssignments;
SmallVector<int, 16> RHSValNoAssignments;
Chris Lattner
committed
SmallVector<std::pair<unsigned,unsigned>, 16> ValueNumberInfo;
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
// If a live interval is a physical register, conservatively check if any
// of its sub-registers is overlapping the live interval of the virtual
// register. If so, do not coalesce.
if (MRegisterInfo::isPhysicalRegister(LHS.reg) &&
*mri_->getSubRegisters(LHS.reg)) {
for (const unsigned* SR = mri_->getSubRegisters(LHS.reg); *SR; ++SR)
if (hasInterval(*SR) && RHS.overlaps(getInterval(*SR))) {
DOUT << "Interfere with sub-register ";
DEBUG(getInterval(*SR).print(DOUT, mri_));
return false;
}
} else if (MRegisterInfo::isPhysicalRegister(RHS.reg) &&
*mri_->getSubRegisters(RHS.reg)) {
for (const unsigned* SR = mri_->getSubRegisters(RHS.reg); *SR; ++SR)
if (hasInterval(*SR) && LHS.overlaps(getInterval(*SR))) {
DOUT << "Interfere with sub-register ";
DEBUG(getInterval(*SR).print(DOUT, mri_));
return false;
}
}
// Compute ultimate value numbers for the LHS and RHS values.
if (RHS.containsOneValue()) {
// Copies from a liveinterval with a single value are simple to handle and
// very common, handle the special case here. This is important, because
// often RHS is small and LHS is large (e.g. a physreg).
// Find out if the RHS is defined as a copy from some value in the LHS.
int RHSValID = -1;
std::pair<unsigned,unsigned> RHSValNoInfo;
Chris Lattner
committed
unsigned RHSSrcReg = RHS.getSrcRegForValNum(0);
if ((RHSSrcReg == 0 || rep(RHSSrcReg) != LHS.reg)) {
// If RHS is not defined as a copy from the LHS, we can use simpler and
// faster checks to see if the live ranges are coallescable. This joiner
// can't swap the LHS/RHS intervals though.
if (!MRegisterInfo::isPhysicalRegister(RHS.reg)) {
return SimpleJoin(LHS, RHS);
} else {
Chris Lattner
committed
RHSValNoInfo = RHS.getValNumInfo(0);
}
} else {
Chris Lattner
committed
// It was defined as a copy from the LHS, find out what value # it is.
unsigned ValInst = RHS.getInstForValNum(0);
RHSValID = LHS.getLiveRangeContaining(ValInst-1)->ValId;
RHSValNoInfo = LHS.getValNumInfo(RHSValID);
}
Chris Lattner
committed
LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
ValueNumberInfo.resize(LHS.getNumValNums());
// Okay, *all* of the values in LHS that are defined as a copy from RHS
// should now get updated.
for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) {
if (unsigned LHSSrcReg = LHS.getSrcRegForValNum(VN)) {
if (rep(LHSSrcReg) != RHS.reg) {
// If this is not a copy from the RHS, its value number will be
// unmodified by the coallescing.
ValueNumberInfo[VN] = LHS.getValNumInfo(VN);
LHSValNoAssignments[VN] = VN;
} else if (RHSValID == -1) {
// Otherwise, it is a copy from the RHS, and we don't already have a
// value# for it. Keep the current value number, but remember it.
LHSValNoAssignments[VN] = RHSValID = VN;
ValueNumberInfo[VN] = RHSValNoInfo;
} else {
// Otherwise, use the specified value #.
LHSValNoAssignments[VN] = RHSValID;
if (VN != (unsigned)RHSValID)
ValueNumberInfo[VN].first = ~1U;
else
ValueNumberInfo[VN] = RHSValNoInfo;
}
} else {
ValueNumberInfo[VN] = LHS.getValNumInfo(VN);
LHSValNoAssignments[VN] = VN;
}
}
assert(RHSValID != -1 && "Didn't find value #?");
RHSValNoAssignments[0] = RHSValID;
} else {
// Loop over the value numbers of the LHS, seeing if any are defined from
// the RHS.
SmallVector<int, 16> LHSValsDefinedFromRHS;
LHSValsDefinedFromRHS.resize(LHS.getNumValNums(), -1);
for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) {
unsigned ValSrcReg = LHS.getSrcRegForValNum(VN);
if (ValSrcReg == 0) // Src not defined by a copy?
continue;
// DstReg is known to be a register in the LHS interval. If the src is
// from the RHS interval, we can use its value #.
if (rep(ValSrcReg) != RHS.reg)
continue;
// Figure out the value # from the RHS.
unsigned ValInst = LHS.getInstForValNum(VN);
LHSValsDefinedFromRHS[VN] = RHS.getLiveRangeContaining(ValInst-1)->ValId;
}
// Loop over the value numbers of the RHS, seeing if any are defined from
// the LHS.
SmallVector<int, 16> RHSValsDefinedFromLHS;
RHSValsDefinedFromLHS.resize(RHS.getNumValNums(), -1);
for (unsigned VN = 0, e = RHS.getNumValNums(); VN != e; ++VN) {
unsigned ValSrcReg = RHS.getSrcRegForValNum(VN);
if (ValSrcReg == 0) // Src not defined by a copy?
continue;
// DstReg is known to be a register in the RHS interval. If the src is
// from the LHS interval, we can use its value #.
if (rep(ValSrcReg) != LHS.reg)
continue;
// Figure out the value # from the LHS.
unsigned ValInst = RHS.getInstForValNum(VN);
RHSValsDefinedFromLHS[VN] = LHS.getLiveRangeContaining(ValInst-1)->ValId;
}
Chris Lattner
committed
LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
ValueNumberInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) {
Chris Lattner
committed
if (LHSValNoAssignments[VN] >= 0 || LHS.getInstForValNum(VN) == ~2U)
continue;
ComputeUltimateVN(VN, ValueNumberInfo,
LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
LHSValNoAssignments, RHSValNoAssignments, LHS, RHS);
}
for (unsigned VN = 0, e = RHS.getNumValNums(); VN != e; ++VN) {
Chris Lattner
committed
if (RHSValNoAssignments[VN] >= 0 || RHS.getInstForValNum(VN) == ~2U)
continue;
// If this value number isn't a copy from the LHS, it's a new number.
if (RHSValsDefinedFromLHS[VN] == -1) {
ValueNumberInfo.push_back(RHS.getValNumInfo(VN));
RHSValNoAssignments[VN] = ValueNumberInfo.size()-1;
continue;
}
ComputeUltimateVN(VN, ValueNumberInfo,
RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
RHSValNoAssignments, LHSValNoAssignments, RHS, LHS);
}
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
}
// Armed with the mappings of LHS/RHS values to ultimate values, walk the
// interval lists to see if these intervals are coallescable.
LiveInterval::const_iterator I = LHS.begin();
LiveInterval::const_iterator IE = LHS.end();
LiveInterval::const_iterator J = RHS.begin();
LiveInterval::const_iterator JE = RHS.end();
// Skip ahead until the first place of potential sharing.
if (I->start < J->start) {
I = std::upper_bound(I, IE, J->start);
if (I != LHS.begin()) --I;
} else if (J->start < I->start) {
J = std::upper_bound(J, JE, I->start);
if (J != RHS.begin()) --J;
}
while (1) {
// Determine if these two live ranges overlap.
bool Overlaps;
if (I->start < J->start) {
Overlaps = I->end > J->start;
} else {
Overlaps = J->end > I->start;
}
// If so, check value # info to determine if they are really different.
if (Overlaps) {
// If the live range overlap will map to the same value number in the
// result liverange, we can still coallesce them. If not, we can't.
if (LHSValNoAssignments[I->ValId] != RHSValNoAssignments[J->ValId])
return false;
}
if (I->end < J->end) {
++I;
if (I == IE) break;
} else {
++J;
if (J == JE) break;
}
}
// If we get here, we know that we can coallesce the live ranges. Ask the
// intervals to coallesce themselves now.
LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0],
Chris Lattner
committed
ValueNumberInfo);
return true;
}
Chris Lattner
committed
namespace {
// DepthMBBCompare - Comparison predicate that sort first based on the loop
// depth of the basic block (the unsigned), and then on the MBB number.
struct DepthMBBCompare {
typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
if (LHS.first > RHS.first) return true; // Deeper loops first
LHS.second->getNumber() < RHS.second->getNumber();
}
};
}
Chris Lattner
committed
void LiveIntervals::CopyCoallesceInMBB(MachineBasicBlock *MBB,
Evan Cheng
committed
std::vector<CopyRec> *TryAgain, bool PhysOnly) {
DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n";
Chris Lattner
committed
for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
MII != E;) {
MachineInstr *Inst = MII++;
// If this isn't a copy, we can't join intervals.
unsigned SrcReg, DstReg;
if (!tii_->isMoveInstr(*Inst, SrcReg, DstReg)) continue;
Evan Cheng
committed
if (TryAgain && !JoinCopy(Inst, SrcReg, DstReg, PhysOnly))
TryAgain->push_back(getCopyRec(Inst, SrcReg, DstReg));
Chris Lattner
committed
}
}
void LiveIntervals::joinIntervals() {
DOUT << "********** JOINING INTERVALS ***********\n";
Evan Cheng
committed
JoinedLIs.resize(getNumIntervals());
JoinedLIs.reset();
std::vector<CopyRec> TryAgainList;
const LoopInfo &LI = getAnalysis<LoopInfo>();
if (LI.begin() == LI.end()) {
// If there are no loops in the function, join intervals in function order.
for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
I != E; ++I)
Evan Cheng
committed
CopyCoallesceInMBB(I, &TryAgainList);
} else {
// Otherwise, join intervals in inner loops before other intervals.
// Unfortunately we can't just iterate over loop hierarchy here because
// there may be more MBB's than BB's. Collect MBB's for sorting.
// Join intervals in the function prolog first. We want to join physical
// registers with virtual registers before the intervals got too long.
std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
for (MachineFunction::iterator I = mf_->begin(), E = mf_->end(); I != E;++I)
MBBs.push_back(std::make_pair(LI.getLoopDepth(I->getBasicBlock()), I));
// Sort by loop depth.
std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
// Finally, join intervals in loop nest order.
for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
Evan Cheng
committed
CopyCoallesceInMBB(MBBs[i].second, NULL, true);
for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
Evan Cheng
committed
CopyCoallesceInMBB(MBBs[i].second, &TryAgainList, false);
}
// Joining intervals can allow other intervals to be joined. Iteratively join
// until we make no progress.
bool ProgressMade = true;
while (ProgressMade) {
ProgressMade = false;
for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
CopyRec &TheCopy = TryAgainList[i];
if (TheCopy.MI &&
JoinCopy(TheCopy.MI, TheCopy.SrcReg, TheCopy.DstReg)) {
TheCopy.MI = 0; // Mark this one as done.
ProgressMade = true;
}
}
Chris Lattner
committed
}
Evan Cheng
committed
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
// Some live range has been lengthened due to colaescing, eliminate the
// unnecessary kills.
int RegNum = JoinedLIs.find_first();
while (RegNum != -1) {
unsigned Reg = RegNum + MRegisterInfo::FirstVirtualRegister;
unsigned repReg = rep(Reg);
LiveInterval &LI = getInterval(repReg);
LiveVariables::VarInfo& svi = lv_->getVarInfo(Reg);
for (unsigned i = 0, e = svi.Kills.size(); i != e; ++i) {
MachineInstr *Kill = svi.Kills[i];
// Suppose vr1 = op vr2, x
// and vr1 and vr2 are coalesced. vr2 should still be marked kill
// unless it is a two-address operand.
if (isRemoved(Kill) || hasRegisterDef(Kill, repReg))
continue;
if (LI.liveAt(getInstructionIndex(Kill) + InstrSlots::NUM))
unsetRegisterKill(Kill, repReg);
}
RegNum = JoinedLIs.find_next(RegNum);
}
Chris Lattner
committed
DOUT << "*** Register mapping ***\n";
for (int i = 0, e = r2rMap_.size(); i != e; ++i)
if (r2rMap_[i]) {
DOUT << " reg " << i << " -> ";
DEBUG(printRegName(r2rMap_[i]));
DOUT << "\n";
}
Evan Cheng
committed
/// Return true if the two specified registers belong to different register
/// classes. The registers may be either phys or virt regs.
bool LiveIntervals::differingRegisterClasses(unsigned RegA,
unsigned RegB) const {
// Get the register classes for the first reg.
if (MRegisterInfo::isPhysicalRegister(RegA)) {
assert(MRegisterInfo::isVirtualRegister(RegB) &&
"Shouldn't consider two physregs!");
Evan Cheng
committed
return !mf_->getSSARegMap()->getRegClass(RegB)->contains(RegA);
// Compare against the regclass for the second reg.
Evan Cheng
committed
const TargetRegisterClass *RegClass = mf_->getSSARegMap()->getRegClass(RegA);
if (MRegisterInfo::isVirtualRegister(RegB))
return RegClass != mf_->getSSARegMap()->getRegClass(RegB);
else
return !RegClass->contains(RegB);
}
Evan Cheng
committed
/// lastRegisterUse - Returns the last use of the specific register between
/// cycles Start and End. It also returns the use operand by reference. It
/// returns NULL if there are no uses.
MachineInstr *
LiveIntervals::lastRegisterUse(unsigned Start, unsigned End, unsigned Reg,
Evan Cheng
committed
MachineOperand *&MOU) {
int e = (End-1) / InstrSlots::NUM * InstrSlots::NUM;
int s = Start;
while (e >= s) {
// Skip deleted instructions
Evan Cheng
committed
MachineInstr *MI = getInstructionFromIndex(e);
while ((e - InstrSlots::NUM) >= s && !MI) {
e -= InstrSlots::NUM;
MI = getInstructionFromIndex(e);
}
if (e < s || MI == NULL)
return NULL;
Evan Cheng
committed
for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (MO.isReg() && MO.isUse() && MO.getReg() &&
Evan Cheng
committed
mri_->regsOverlap(rep(MO.getReg()), Reg)) {
MOU = &MO;
return MI;
}
Evan Cheng
committed
e -= InstrSlots::NUM;
Evan Cheng
committed
return NULL;
}
/// findDefOperand - Returns the MachineOperand that is a def of the specific
/// register. It returns NULL if the def is not found.
MachineOperand *LiveIntervals::findDefOperand(MachineInstr *MI, unsigned Reg) {
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (MO.isReg() && MO.isDef() &&
mri_->regsOverlap(rep(MO.getReg()), Reg))
return &MO;
}
return NULL;
Evan Cheng
committed
/// unsetRegisterKill - Unset IsKill property of all uses of specific register
/// of the specific instruction.
void LiveIntervals::unsetRegisterKill(MachineInstr *MI, unsigned Reg) {
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (MO.isReg() && MO.isUse() && MO.isKill() && MO.getReg() &&
mri_->regsOverlap(rep(MO.getReg()), Reg))
MO.unsetIsKill();
}
}
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
/// unsetRegisterKills - Unset IsKill property of all uses of specific register
/// between cycles Start and End.
void LiveIntervals::unsetRegisterKills(unsigned Start, unsigned End,
unsigned Reg) {
int e = (End-1) / InstrSlots::NUM * InstrSlots::NUM;
int s = Start;
while (e >= s) {
// Skip deleted instructions
MachineInstr *MI = getInstructionFromIndex(e);
while ((e - InstrSlots::NUM) >= s && !MI) {
e -= InstrSlots::NUM;
MI = getInstructionFromIndex(e);
}
if (e < s || MI == NULL)
return;
for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (MO.isReg() && MO.isUse() && MO.isKill() && MO.getReg() &&
mri_->regsOverlap(rep(MO.getReg()), Reg)) {
MO.unsetIsKill();
}
}
e -= InstrSlots::NUM;
}
}
Evan Cheng
committed
/// hasRegisterDef - True if the instruction defines the specific register.
///
bool LiveIntervals::hasRegisterDef(MachineInstr *MI, unsigned Reg) {
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (MO.isReg() && MO.isDef() &&
mri_->regsOverlap(rep(MO.getReg()), Reg))
return true;
}
return false;
}
LiveInterval LiveIntervals::createInterval(unsigned reg) {
float Weight = MRegisterInfo::isPhysicalRegister(reg) ?
return LiveInterval(reg, Weight);