Skip to content
CodeGenModule.cpp 85 KiB
Newer Older

  llvm::GlobalVariable *GV =
    new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
Chris Lattner's avatar
Chris Lattner committed
                             llvm::GlobalValue::ExternalLinkage,
                             false, Ty->getAddressSpace());
Chris Lattner's avatar
Chris Lattner committed
  // Handle things which are present even on external declarations.
Mike Stump's avatar
Mike Stump committed
    // FIXME: This code is overly simple and should be merged with other global
    // handling.
    GV->setConstant(DeclIsConstantGlobal(Context, D, false));
    // Set linkage and visibility in case we never see a definition.
    NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
    if (LV.linkage() != ExternalLinkage) {
      // Don't set internal linkage on declarations.
    } else {
      if (D->hasAttr<DLLImportAttr>())
        GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
      else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
        GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);

      // Set visibility on a declaration only if it's explicit.
      if (LV.visibilityExplicit())
        GV->setVisibility(GetLLVMVisibility(LV.visibility()));

    GV->setThreadLocal(D->isThreadSpecified());
llvm::GlobalVariable *
CodeGenModule::CreateOrReplaceCXXRuntimeVariable(llvm::StringRef Name, 
                                      const llvm::Type *Ty,
                                      llvm::GlobalValue::LinkageTypes Linkage) {
  llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
  llvm::GlobalVariable *OldGV = 0;

  
  if (GV) {
    // Check if the variable has the right type.
    if (GV->getType()->getElementType() == Ty)
      return GV;

    // Because C++ name mangling, the only way we can end up with an already
    // existing global with the same name is if it has been declared extern "C".
      assert(GV->isDeclaration() && "Declaration has wrong type!");
    OldGV = GV;
  }
  
  // Create a new variable.
  GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
                                Linkage, 0, Name);
  
  if (OldGV) {
    // Replace occurrences of the old variable if needed.
    GV->takeName(OldGV);
    
    if (!OldGV->use_empty()) {
      llvm::Constant *NewPtrForOldDecl =
      llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
      OldGV->replaceAllUsesWith(NewPtrForOldDecl);
    }
    
    OldGV->eraseFromParent();
  }
  
  return GV;
}

/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
/// given global variable.  If Ty is non-null and if the global doesn't exist,
/// then it will be greated with the specified type instead of whatever the
/// normal requested type would be.
llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
                                                  const llvm::Type *Ty) {
  assert(D->hasGlobalStorage() && "Not a global variable");
  QualType ASTTy = D->getType();
  if (Ty == 0)
    Ty = getTypes().ConvertTypeForMem(ASTTy);

  const llvm::PointerType *PTy =
    llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
  llvm::StringRef MangledName = getMangledName(D);
  return GetOrCreateLLVMGlobal(MangledName, PTy, D);
/// CreateRuntimeVariable - Create a new runtime global variable with the
/// specified type and name.
llvm::Constant *
CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
  return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
  assert(!D->getInit() && "Cannot emit definite definitions here!");

  if (MayDeferGeneration(D)) {
    // If we have not seen a reference to this variable yet, place it
    // into the deferred declarations table to be emitted if needed
    // later.
    llvm::StringRef MangledName = getMangledName(D);
    if (!GetGlobalValue(MangledName)) {
      DeferredDecls[MangledName] = D;
  EmitGlobalVarDefinition(D);
}

void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
  if (DefinitionRequired)
    getVTables().GenerateClassData(getVTableLinkage(Class), Class);
}

CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
  if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
    return llvm::GlobalVariable::InternalLinkage;

  if (const CXXMethodDecl *KeyFunction
                                    = RD->getASTContext().getKeyFunction(RD)) {
    // If this class has a key function, use that to determine the linkage of
    // the vtable.
    switch (KeyFunction->getTemplateSpecializationKind()) {
      case TSK_Undeclared:
      case TSK_ExplicitSpecialization:
        // When compiling with optimizations turned on, we emit all vtables,
        // even if the key function is not defined in the current translation
        // unit. If this is the case, use available_externally linkage.
        if (!Def && CodeGenOpts.OptimizationLevel)
          return llvm::GlobalVariable::AvailableExternallyLinkage;

          return !Context.getLangOptions().AppleKext ?
                   llvm::GlobalVariable::LinkOnceODRLinkage :
                   llvm::Function::InternalLinkage;
        
        return llvm::GlobalVariable::ExternalLinkage;
        
      case TSK_ImplicitInstantiation:
        return !Context.getLangOptions().AppleKext ?
                 llvm::GlobalVariable::LinkOnceODRLinkage :
                 llvm::Function::InternalLinkage;
        return !Context.getLangOptions().AppleKext ?
                 llvm::GlobalVariable::WeakODRLinkage :
                 llvm::Function::InternalLinkage;
      case TSK_ExplicitInstantiationDeclaration:
        // FIXME: Use available_externally linkage. However, this currently
        // breaks LLVM's build due to undefined symbols.
        //      return llvm::GlobalVariable::AvailableExternallyLinkage;
        return !Context.getLangOptions().AppleKext ?
                 llvm::GlobalVariable::LinkOnceODRLinkage :
                 llvm::Function::InternalLinkage;
  if (Context.getLangOptions().AppleKext)
    return llvm::Function::InternalLinkage;
  
  switch (RD->getTemplateSpecializationKind()) {
  case TSK_Undeclared:
  case TSK_ExplicitSpecialization:
  case TSK_ImplicitInstantiation:
    // FIXME: Use available_externally linkage. However, this currently
    // breaks LLVM's build due to undefined symbols.
    //   return llvm::GlobalVariable::AvailableExternallyLinkage;
  case TSK_ExplicitInstantiationDeclaration:
    return llvm::GlobalVariable::LinkOnceODRLinkage;

  case TSK_ExplicitInstantiationDefinition:
      return llvm::GlobalVariable::WeakODRLinkage;
  return llvm::GlobalVariable::LinkOnceODRLinkage;
CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
    return Context.toCharUnitsFromBits(
      TheTargetData.getTypeStoreSizeInBits(Ty));
void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
  QualType ASTTy = D->getType();
  const Expr *InitExpr = D->getAnyInitializer();
    // This is a tentative definition; tentative definitions are
    // implicitly initialized with { 0 }.
    //
    // Note that tentative definitions are only emitted at the end of
    // a translation unit, so they should never have incomplete
    // type. In addition, EmitTentativeDefinition makes sure that we
    // never attempt to emit a tentative definition if a real one
    // exists. A use may still exists, however, so we still may need
    // to do a RAUW.
    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
    Init = EmitNullConstant(D->getType());
    Init = EmitConstantExpr(InitExpr, D->getType());       
      if (D->getType()->isReferenceType())
        T = D->getType();
      
      if (getLangOptions().CPlusPlus) {
        Init = EmitNullConstant(T);
      } else {
        ErrorUnsupported(D, "static initializer");
        Init = llvm::UndefValue::get(getTypes().ConvertType(T));
      }
    } else {
      // We don't need an initializer, so remove the entry for the delayed
      // initializer position (just in case this entry was delayed).
      if (getLangOptions().CPlusPlus)
        DelayedCXXInitPosition.erase(D);
Chris Lattner's avatar
Chris Lattner committed
  const llvm::Type* InitType = Init->getType();
  llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
  // Strip off a bitcast if we got one back.
  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
    assert(CE->getOpcode() == llvm::Instruction::BitCast ||
           // all zero index gep.
           CE->getOpcode() == llvm::Instruction::GetElementPtr);
  // Entry is now either a Function or GlobalVariable.
  llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
  // We have a definition after a declaration with the wrong type.
  // We must make a new GlobalVariable* and update everything that used OldGV
  // (a declaration or tentative definition) with the new GlobalVariable*
  // (which will be a definition).
  //
  // This happens if there is a prototype for a global (e.g.
  // "extern int x[];") and then a definition of a different type (e.g.
  // "int x[10];"). This also happens when an initializer has a different type
  // from the type of the global (this happens with unions).
  if (GV == 0 ||
      GV->getType()->getElementType() != InitType ||
      GV->getType()->getAddressSpace() !=
        getContext().getTargetAddressSpace(ASTTy)) {
    // Move the old entry aside so that we'll create a new one.
    Entry->setName(llvm::StringRef());
    // Make a new global with the correct type, this is now guaranteed to work.
    GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
    // Replace all uses of the old global with the new global
    llvm::Constant *NewPtrForOldDecl =
        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
    Entry->replaceAllUsesWith(NewPtrForOldDecl);

    // Erase the old global, since it is no longer used.
    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
  if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
    SourceManager &SM = Context.getSourceManager();
    AddAnnotation(EmitAnnotateAttr(GV, AA,
                              SM.getInstantiationLineNumber(D->getLocation())));

  // If it is safe to mark the global 'constant', do so now.
  GV->setConstant(false);
  if (!NonConstInit && DeclIsConstantGlobal(Context, D, true))
  GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
  // Set the llvm linkage type as appropriate.
  llvm::GlobalValue::LinkageTypes Linkage = 
    GetLLVMLinkageVarDefinition(D, GV);
  GV->setLinkage(Linkage);
  if (Linkage == llvm::GlobalVariable::CommonLinkage)
    // common vars aren't constant even if declared const.
    GV->setConstant(false);

  SetCommonAttributes(D, GV);

  // Emit the initializer function if necessary.
  if (NonConstInit)
    EmitCXXGlobalVarDeclInitFunc(D, GV);

  // Emit global variable debug information.
  if (CGDebugInfo *DI = getModuleDebugInfo()) {
    DI->setLocation(D->getLocation());
    DI->EmitGlobalVariable(GV, D);
  }
}

llvm::GlobalValue::LinkageTypes
CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
                                           llvm::GlobalVariable *GV) {
  GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
  if (Linkage == GVA_Internal)
    return llvm::Function::InternalLinkage;
    return llvm::Function::DLLImportLinkage;
    return llvm::Function::DLLExportLinkage;
  else if (D->hasAttr<WeakAttr>()) {
    if (GV->isConstant())
      return llvm::GlobalVariable::WeakODRLinkage;
      return llvm::GlobalVariable::WeakAnyLinkage;
  } else if (Linkage == GVA_TemplateInstantiation ||
             Linkage == GVA_ExplicitTemplateInstantiation)
    return llvm::GlobalVariable::WeakODRLinkage;
  else if (!getLangOptions().CPlusPlus && 
           ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
             D->getAttr<CommonAttr>()) &&
           !D->hasExternalStorage() && !D->getInit() &&
           !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) {
    // Thread local vars aren't considered common linkage.
    return llvm::GlobalVariable::CommonLinkage;
  return llvm::GlobalVariable::ExternalLinkage;
/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
/// implement a function with no prototype, e.g. "int foo() {}".  If there are
/// existing call uses of the old function in the module, this adjusts them to
/// call the new function directly.
///
/// This is not just a cleanup: the always_inline pass requires direct calls to
/// functions to be able to inline them.  If there is a bitcast in the way, it
/// won't inline them.  Instcombine normally deletes these calls, but it isn't
/// run at -O0.
static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
                                                      llvm::Function *NewFn) {
  // If we're redefining a global as a function, don't transform it.
  llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
  if (OldFn == 0) return;
  const llvm::Type *NewRetTy = NewFn->getReturnType();
  llvm::SmallVector<llvm::Value*, 4> ArgList;

  for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
    // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
    llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
    llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
    if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
    llvm::CallSite CS(CI);
    // If the return types don't match exactly, and if the call isn't dead, then
    // we can't transform this call.
    if (CI->getType() != NewRetTy && !CI->use_empty())
      continue;

    // If the function was passed too few arguments, don't transform.  If extra
    // arguments were passed, we silently drop them.  If any of the types
    // mismatch, we don't transform.
    unsigned ArgNo = 0;
    bool DontTransform = false;
    for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
         E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
      if (CS.arg_size() == ArgNo ||
          CS.getArgument(ArgNo)->getType() != AI->getType()) {
        DontTransform = true;
        break;
      }
    }
    if (DontTransform)
      continue;
    // Okay, we can transform this.  Create the new call instruction and copy
    // over the required information.
    ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
    llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
                                                     ArgList.end(), "", CI);
    ArgList.clear();
    if (!NewCall->getType()->isVoidTy())
      NewCall->takeName(CI);
    NewCall->setAttributes(CI->getAttributes());
    NewCall->setCallingConv(CI->getCallingConv());

    // Finally, remove the old call, replacing any uses with the new one.
    if (!CI->use_empty())
      CI->replaceAllUsesWith(NewCall);
    // Copy debug location attached to CI.
    if (!CI->getDebugLoc().isUnknown())
      NewCall->setDebugLoc(CI->getDebugLoc());
void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
  const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
  // Compute the function info and LLVM type.
  const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD);
  bool variadic = false;
  if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>())
    variadic = fpt->isVariadic();
  const llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic, false);
  // Get or create the prototype for the function.
  llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
  // Strip off a bitcast if we got one back.
  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
    assert(CE->getOpcode() == llvm::Instruction::BitCast);
    Entry = CE->getOperand(0);
  }
  if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
    llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
    // If the types mismatch then we have to rewrite the definition.
           "Shouldn't replace non-declaration");
    // F is the Function* for the one with the wrong type, we must make a new
    // Function* and update everything that used F (a declaration) with the new
    // Function* (which will be a definition).
    //
    // This happens if there is a prototype for a function
    // (e.g. "int f()") and then a definition of a different type
    // (e.g. "int f(int x)").  Move the old function aside so that it
    // doesn't interfere with GetAddrOfFunction.
    OldFn->setName(llvm::StringRef());
    llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
    // If this is an implementation of a function without a prototype, try to
    // replace any existing uses of the function (which may be calls) with uses
    // of the new function
    if (D->getType()->isFunctionNoProtoType()) {
      ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
      OldFn->removeDeadConstantUsers();
    }
    // Replace uses of F with the Function we will endow with a body.
      llvm::Constant *NewPtrForOldDecl =
        llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
      Entry->replaceAllUsesWith(NewPtrForOldDecl);
    }
    // Ok, delete the old function now, which is dead.
  // We need to set linkage and visibility on the function before
  // generating code for it because various parts of IR generation
  // want to propagate this information down (e.g. to local static
  // declarations).
  llvm::Function *Fn = cast<llvm::Function>(Entry);
  // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
  setGlobalVisibility(Fn, D);
  CodeGenFunction(*this).GenerateCode(D, Fn, FI);
  SetFunctionDefinitionAttributes(D, Fn);
  SetLLVMFunctionAttributesForDefinition(D, Fn);
  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
    AddGlobalCtor(Fn, CA->getPriority());
  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
    AddGlobalDtor(Fn, DA->getPriority());
void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
  const AliasAttr *AA = D->getAttr<AliasAttr>();
  llvm::StringRef MangledName = getMangledName(GD);

  // If there is a definition in the module, then it wins over the alias.
  // This is dubious, but allow it to be safe.  Just ignore the alias.
  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
  if (Entry && !Entry->isDeclaration())
    return;
  const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());

  // Create a reference to the named value.  This ensures that it is emitted
  // if a deferred decl.
  llvm::Constant *Aliasee;
  if (isa<llvm::FunctionType>(DeclTy))
    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
                                      /*ForVTable=*/false);
    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
                                    llvm::PointerType::getUnqual(DeclTy), 0);

  // Create the new alias itself, but don't set a name yet.
  llvm::GlobalValue *GA =
    new llvm::GlobalAlias(Aliasee->getType(),
                          llvm::Function::ExternalLinkage,
                          "", Aliasee, &getModule());
    // If there is a declaration in the module, then we had an extern followed
    // by the alias, as in:
    //   extern int test6();
    //   ...
    //   int test6() __attribute__((alias("test7")));
    //
    // Remove it and replace uses of it with the alias.
    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
                                                          Entry->getType()));
    Entry->eraseFromParent();
  // Set attributes which are particular to an alias; this is a
  // specialization of the attributes which may be set on a global
  // variable/function.
    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
      // The dllexport attribute is ignored for undefined symbols.
        GA->setLinkage(llvm::Function::DLLExportLinkage);
    } else {
      GA->setLinkage(llvm::Function::DLLExportLinkage);
    }
  } else if (D->hasAttr<WeakAttr>() ||
    GA->setLinkage(llvm::Function::WeakAnyLinkage);
  }

  SetCommonAttributes(D, GA);
/// getBuiltinLibFunction - Given a builtin id for a function like
/// "__builtin_fabsf", return a Function* for "fabsf".
llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
                                                  unsigned BuiltinID) {
  assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
          Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
  // Get the name, skip over the __builtin_ prefix (if necessary).
  llvm::StringRef Name;
  GlobalDecl D(FD);

  // If the builtin has been declared explicitly with an assembler label,
  // use the mangled name. This differs from the plain label on platforms
  // that prefix labels.
Joerg Sonnenberger's avatar
Joerg Sonnenberger committed
  if (FD->hasAttr<AsmLabelAttr>())
    Name = getMangledName(D);
  else if (Context.BuiltinInfo.isLibFunction(BuiltinID))
    Name = Context.BuiltinInfo.GetName(BuiltinID) + 10;
  else
    Name = Context.BuiltinInfo.GetName(BuiltinID);


  const llvm::FunctionType *Ty =
    cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
  return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
                                            unsigned NumTys) {
  return llvm::Intrinsic::getDeclaration(&getModule(),
                                         (llvm::Intrinsic::ID)IID, Tys, NumTys);
}
static llvm::StringMapEntry<llvm::Constant*> &
GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
                         const StringLiteral *Literal,
                         bool &IsUTF16,
                         unsigned &StringLength) {
  llvm::StringRef String = Literal->getString();
  unsigned NumBytes = String.size();
  // Check for simple case.
  if (!Literal->containsNonAsciiOrNull()) {
    StringLength = NumBytes;
  // Otherwise, convert the UTF8 literals into a byte string.
  llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
  const UTF8 *FromPtr = (UTF8 *)String.data();
  UTF16 *ToPtr = &ToBuf[0];
Fariborz Jahanian's avatar
Fariborz Jahanian committed
  (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
                           &ToPtr, ToPtr + NumBytes,
                           strictConversion);
  // ConvertUTF8toUTF16 returns the length in ToPtr.
  StringLength = ToPtr - &ToBuf[0];

  // Render the UTF-16 string into a byte array and convert to the target byte
  // order.
  //
  // FIXME: This isn't something we should need to do here.
  llvm::SmallString<128> AsBytes;
  AsBytes.reserve(StringLength * 2);
  for (unsigned i = 0; i != StringLength; ++i) {
    unsigned short Val = ToBuf[i];
    if (TargetIsLSB) {
      AsBytes.push_back(Val & 0xFF);
      AsBytes.push_back(Val >> 8);
    } else {
      AsBytes.push_back(Val >> 8);
      AsBytes.push_back(Val & 0xFF);
    }
  }
  // Append one extra null character, the second is automatically added by our
  // caller.
  AsBytes.push_back(0);
  return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
static llvm::StringMapEntry<llvm::Constant*> &
GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
		       const StringLiteral *Literal,
		       unsigned &StringLength)
{
	llvm::StringRef String = Literal->getString();
	StringLength = String.size();
	return Map.GetOrCreateValue(String);
}

llvm::Constant *
CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
  unsigned StringLength = 0;
  bool isUTF16 = false;
  llvm::StringMapEntry<llvm::Constant*> &Entry =
    GetConstantCFStringEntry(CFConstantStringMap, Literal,
                             getTargetData().isLittleEndian(),
                             isUTF16, StringLength);
  if (llvm::Constant *C = Entry.getValue())
    return C;
  llvm::Constant *Zero =
      llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
  llvm::Constant *Zeros[] = { Zero, Zero };
  // If we don't already have it, get __CFConstantStringClassReference.
  if (!CFConstantStringClassRef) {
    const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
    Ty = llvm::ArrayType::get(Ty, 0);
    llvm::Constant *GV = CreateRuntimeVariable(Ty,
                                           "__CFConstantStringClassReference");
    // Decay array -> ptr
    CFConstantStringClassRef =
      llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
  QualType CFTy = getContext().getCFConstantStringType();
  const llvm::StructType *STy =
    cast<llvm::StructType>(getTypes().ConvertType(CFTy));

  const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
  Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
  llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
  llvm::GlobalValue::LinkageTypes Linkage;
  bool isConstant;
    // FIXME: why do utf strings get "_" labels instead of "L" labels?
    Linkage = llvm::GlobalValue::InternalLinkage;
    // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
    // does make plain ascii ones writable.
    isConstant = true;
    // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
    // when using private linkage. It is not clear if this is a bug in ld
    // or a reasonable new restriction.
    Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
    isConstant = !Features.WritableStrings;
  llvm::GlobalVariable *GV =
    new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
                             ".str");
  GV->setUnnamedAddr(true);
    CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
    GV->setAlignment(Align.getQuantity());
  } else {
    CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
    GV->setAlignment(Align.getQuantity());
  Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);

  // String length.
  Ty = getTypes().ConvertType(getContext().LongTy);
  Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
  C = llvm::ConstantStruct::get(STy, Fields);
  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
                                llvm::GlobalVariable::PrivateLinkage, C,
  if (const char *Sect = getContext().Target.getCFStringSection())
    GV->setSection(Sect);
  Entry.setValue(GV);
CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
  unsigned StringLength = 0;
  llvm::StringMapEntry<llvm::Constant*> &Entry =
    GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
  
  if (llvm::Constant *C = Entry.getValue())
    return C;
  
  llvm::Constant *Zero =
  llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
  llvm::Constant *Zeros[] = { Zero, Zero };
  
  // If we don't already have it, get _NSConstantStringClassReference.
  if (!ConstantStringClassRef) {
    std::string StringClass(getLangOptions().ObjCConstantStringClass);
    const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
      std::string str = 
        StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 
                            : "OBJC_CLASS_$_" + StringClass;
      GV = getObjCRuntime().GetClassGlobal(str);
      // Make sure the result is of the correct type.
      const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
      ConstantStringClassRef =
        llvm::ConstantExpr::getBitCast(GV, PTy);
    } else {
      std::string str =
        StringClass.empty() ? "_NSConstantStringClassReference"
                            : "_" + StringClass + "ClassReference";
      const llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
      GV = CreateRuntimeVariable(PTy, str);
      // Decay array -> ptr
      ConstantStringClassRef = 
        llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
  }
  
  QualType NSTy = getContext().getNSConstantStringType();
  
  const llvm::StructType *STy =
  cast<llvm::StructType>(getTypes().ConvertType(NSTy));
  
  std::vector<llvm::Constant*> Fields(3);
  
  // Class pointer.
  
  // String pointer.
  llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
  
  llvm::GlobalValue::LinkageTypes Linkage;
  bool isConstant;
  Linkage = llvm::GlobalValue::PrivateLinkage;
  isConstant = !Features.WritableStrings;
  
  llvm::GlobalVariable *GV =
  new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
                           ".str");
  GV->setUnnamedAddr(true);
  CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
  GV->setAlignment(Align.getQuantity());
  Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
  
  // String length.
  const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
  Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
  
  // The struct.
  C = llvm::ConstantStruct::get(STy, Fields);
  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
                                llvm::GlobalVariable::PrivateLinkage, C,
                                "_unnamed_nsstring_");
  // FIXME. Fix section.
  if (const char *Sect = 
        Features.ObjCNonFragileABI 
          ? getContext().Target.getNSStringNonFragileABISection() 
          : getContext().Target.getNSStringSection())
    GV->setSection(Sect);
  Entry.setValue(GV);
  
  return GV;
/// GetStringForStringLiteral - Return the appropriate bytes for a
/// string literal, properly padded to match the literal type.
std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
  const ASTContext &Context = getContext();
    Context.getAsConstantArrayType(E->getType());
  assert(CAT && "String isn't pointer or array!");
  // Resize the string to the right size.
  uint64_t RealLen = CAT->getSize().getZExtValue();
    RealLen *= Context.Target.getWCharWidth() / Context.getCharWidth();
/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
/// constant array for the given string literal.
llvm::Constant *
CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
  // FIXME: This can be more efficient.
  // FIXME: We shouldn't need to bitcast the constant in the wide string case.
  llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
  if (S->isWide()) {
    llvm::Type *DestTy =
        llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
    C = llvm::ConstantExpr::getBitCast(C, DestTy);
  }
  return C;
/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
/// array for the given ObjCEncodeExpr node.
llvm::Constant *
CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
  std::string Str;
  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
/// GenerateWritableString -- Creates storage for a string literal.
Benjamin Kramer's avatar
Benjamin Kramer committed
static llvm::Constant *GenerateStringLiteral(llvm::StringRef str,
                                             CodeGenModule &CGM,
                                             const char *GlobalName) {
  // Create Constant for this string literal. Don't add a '\0'.
  llvm::Constant *C =
      llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
  // Create a global variable for this string
  llvm::GlobalVariable *GV =
    new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
                             llvm::GlobalValue::PrivateLinkage,
                             C, GlobalName);
  GV->setUnnamedAddr(true);
  return GV;
/// GetAddrOfConstantString - Returns a pointer to a character array
/// containing the literal. This contents are exactly that of the
/// given string, i.e. it will not be null terminated automatically;
/// see GetAddrOfConstantCString. Note that whether the result is
/// actually a pointer to an LLVM constant depends on
/// Feature.WriteableStrings.
///
/// The result has pointer to array type.
Benjamin Kramer's avatar
Benjamin Kramer committed
llvm::Constant *CodeGenModule::GetAddrOfConstantString(llvm::StringRef Str,
  bool IsConstant = !Features.WritableStrings;

  // Get the default prefix if a name wasn't specified.
  if (!GlobalName)

  // Don't share any string literals if strings aren't constant.
  if (!IsConstant)
Benjamin Kramer's avatar
Benjamin Kramer committed
    return GenerateStringLiteral(Str, false, *this, GlobalName);

  llvm::StringMapEntry<llvm::Constant *> &Entry =
Benjamin Kramer's avatar
Benjamin Kramer committed
    ConstantStringMap.GetOrCreateValue(Str);
Benjamin Kramer's avatar
Benjamin Kramer committed
  llvm::Constant *C = GenerateStringLiteral(Str, true, *this, GlobalName);

/// GetAddrOfConstantCString - Returns a pointer to a character
Benjamin Kramer's avatar
Benjamin Kramer committed
/// array containing the literal and a terminating '\0'
/// character. The result has pointer to array type.
Benjamin Kramer's avatar
Benjamin Kramer committed
llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
Benjamin Kramer's avatar
Benjamin Kramer committed
  llvm::StringRef StrWithNull(Str.c_str(), Str.size() + 1);
  return GetAddrOfConstantString(StrWithNull, GlobalName);
/// EmitObjCPropertyImplementations - Emit information for synthesized
/// properties for an implementation.
void CodeGenModule::EmitObjCPropertyImplementations(const
                                                    ObjCImplementationDecl *D) {
  for (ObjCImplementationDecl::propimpl_iterator
         i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
    ObjCPropertyImplDecl *PID = *i;
    // Dynamic is just for type-checking.
    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
      ObjCPropertyDecl *PD = PID->getPropertyDecl();

      // Determine which methods need to be implemented, some may have
      // been overridden. Note that ::isSynthesized is not the method
      // we want, that just indicates if the decl came from a
      // property. What we want to know is if the method is defined in
      // this implementation.
      if (!D->getInstanceMethod(PD->getGetterName()))
        CodeGenFunction(*this).GenerateObjCGetter(
                                 const_cast<ObjCImplementationDecl *>(D), PID);
      if (!PD->isReadOnly() &&
          !D->getInstanceMethod(PD->getSetterName()))
        CodeGenFunction(*this).GenerateObjCSetter(
                                 const_cast<ObjCImplementationDecl *>(D), PID);
static bool needsDestructMethod(ObjCImplementationDecl *impl) {
  ObjCInterfaceDecl *iface
    = const_cast<ObjCInterfaceDecl*>(impl->getClassInterface());
  for (ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
       ivar; ivar = ivar->getNextIvar())
    if (ivar->getType().isDestructedType())
      return true;

  return false;
}

/// EmitObjCIvarInitializations - Emit information for ivar initialization
/// for an implementation.
void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
  // We might need a .cxx_destruct even if we don't have any ivar initializers.
  if (needsDestructMethod(D)) {
    IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
    Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
    ObjCMethodDecl *DTORMethod =
      ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
                             cxxSelector, getContext().VoidTy, 0, D, true,
                             false, true, false, ObjCMethodDecl::Required);
    D->addInstanceMethod(DTORMethod);
    CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
  }