Skip to content
DeadStoreElimination.cpp 20.8 KiB
Newer Older
Owen Anderson's avatar
Owen Anderson committed
//===- DeadStoreElimination.cpp - Fast Dead Store Elimination -------------===//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a trivial dead store elimination that only considers
// basic-block local redundant stores.
//
// FIXME: This should eventually be extended to be a post-dominator tree
// traversal.  Doing so would be pretty trivial.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "dse"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Pass.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;

STATISTIC(NumFastStores, "Number of stores deleted");
STATISTIC(NumFastOther , "Number of other instrs removed");

namespace {
  struct DSE : public FunctionPass {
    static char ID; // Pass identification, replacement for typeid
    DSE() : FunctionPass(ID) {
      initializeDSEPass(*PassRegistry::getPassRegistry());
    }

    virtual bool runOnFunction(Function &F) {
      bool Changed = false;
      
      DominatorTree &DT = getAnalysis<DominatorTree>();
      
      for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
        // Only check non-dead blocks.  Dead blocks may have strange pointer
        // cycles that will confuse alias analysis.
        if (DT.isReachableFromEntry(I))
          Changed |= runOnBasicBlock(*I);
    bool handleFreeWithNonTrivialDependency(const CallInst *F,
    bool handleEndBlock(BasicBlock &BB);
    bool RemoveUndeadPointers(Value *Ptr, uint64_t killPointerSize,
                              BasicBlock::iterator &BBI,
                              SmallPtrSet<Value*, 64> &deadPointers);
    void DeleteDeadInstruction(Instruction *I,
                               SmallPtrSet<Value*, 64> *deadPointers = 0);
    

    // getAnalysisUsage - We require post dominance frontiers (aka Control
    // Dependence Graph)
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.setPreservesCFG();
    uint64_t getPointerSize(Value *V) const;
INITIALIZE_PASS_BEGIN(DSE, "dse", "Dead Store Elimination", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
INITIALIZE_PASS_END(DSE, "dse", "Dead Store Elimination", false, false)
FunctionPass *llvm::createDeadStoreEliminationPass() { return new DSE(); }
/// doesClobberMemory - Does this instruction clobber (write without reading)
/// some memory?
static bool doesClobberMemory(Instruction *I) {
  if (isa<StoreInst>(I))
    return true;
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    switch (II->getIntrinsicID()) {
Chris Lattner's avatar
Chris Lattner committed
    default:
      return false;
    case Intrinsic::memset:
    case Intrinsic::memmove:
    case Intrinsic::memcpy:
    case Intrinsic::init_trampoline:
    case Intrinsic::lifetime_end:
      return true;
/// isElidable - If the value of this instruction and the memory it writes to is
/// unused, may we delete this instrtction?
static bool isElidable(Instruction *I) {
  assert(doesClobberMemory(I));
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
    return II->getIntrinsicID() != Intrinsic::lifetime_end;
  if (StoreInst *SI = dyn_cast<StoreInst>(I))
    return !SI->isVolatile();
  return true;
}

/// getPointerOperand - Return the pointer that is being clobbered.
static Value *getPointerOperand(Instruction *I) {
  assert(doesClobberMemory(I));
  if (StoreInst *SI = dyn_cast<StoreInst>(I))
    return SI->getPointerOperand();
  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
    return MI->getArgOperand(0);

  IntrinsicInst *II = cast<IntrinsicInst>(I);
  switch (II->getIntrinsicID()) {
Chris Lattner's avatar
Chris Lattner committed
  default: assert(false && "Unexpected intrinsic!");
  case Intrinsic::init_trampoline:
  case Intrinsic::lifetime_end:
}

/// getStoreSize - Return the length in bytes of the write by the clobbering
/// instruction. If variable or unknown, returns AliasAnalysis::UnknownSize.
static uint64_t getStoreSize(Instruction *I, const TargetData *TD) {
  assert(doesClobberMemory(I));
  if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
    if (!TD) return AliasAnalysis::UnknownSize;
Nick Lewycky's avatar
Nick Lewycky committed
    return TD->getTypeStoreSize(SI->getOperand(0)->getType());
  }

  Value *Len;
  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
    Len = MI->getLength();
  } else {
    IntrinsicInst *II = cast<IntrinsicInst>(I);
    switch (II->getIntrinsicID()) {
Chris Lattner's avatar
Chris Lattner committed
    default: assert(false && "Unexpected intrinsic!");
    case Intrinsic::init_trampoline:
      return AliasAnalysis::UnknownSize;
Chris Lattner's avatar
Chris Lattner committed
    case Intrinsic::lifetime_end:
Chris Lattner's avatar
Chris Lattner committed
      break;
  }
  if (ConstantInt *LenCI = dyn_cast<ConstantInt>(Len))
    if (!LenCI->isAllOnesValue())
      return LenCI->getZExtValue();
  return AliasAnalysis::UnknownSize;
}

/// isStoreAtLeastAsWideAs - Return true if the size of the store in I1 is
/// greater than or equal to the store in I2.  This returns false if we don't
/// know.
static bool isStoreAtLeastAsWideAs(Instruction *I1, Instruction *I2,
                                   const TargetData *TD) {
  const Type *I1Ty = getPointerOperand(I1)->getType();
  const Type *I2Ty = getPointerOperand(I2)->getType();
  
  // Exactly the same type, must have exactly the same size.
  uint64_t I1Size = getStoreSize(I1, TD);
  uint64_t I2Size = getStoreSize(I2, TD);
  return I1Size != AliasAnalysis::UnknownSize &&
         I2Size != AliasAnalysis::UnknownSize &&
         I1Size >= I2Size;
bool DSE::runOnBasicBlock(BasicBlock &BB) {
  MemoryDependenceAnalysis &MD = getAnalysis<MemoryDependenceAnalysis>();
  TD = getAnalysisIfAvailable<TargetData>();
  // Do a top-down walk on the BB.
  for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) {
    Instruction *Inst = BBI++;
    
    // If we find a store or a free, get its memory dependence.
    if (!doesClobberMemory(Inst) && !isFreeCall(Inst))
    MemDepResult InstDep = MD.getDependency(Inst);
    
    // Ignore non-local stores.
    // FIXME: cross-block DSE would be fun. :)
    if (InstDep.isNonLocal()) continue;
  
    // Handle frees whose dependencies are non-trivial.
    if (const CallInst *F = isFreeCall(Inst)) {
      MadeChange |= handleFreeWithNonTrivialDependency(F, Inst, InstDep);
    if (!InstDep.isDef()) {
      // If this is a may-aliased store that is clobbering the store value, we
      // can keep searching past it for another must-aliased pointer that stores
      // to the same location.  For example, in:
      //   store -> P
      //   store -> Q
      //   store -> P
      // we can remove the first store to P even though we don't know if P and Q
      // alias.
      if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
        AliasAnalysis::Location Loc =
          getAnalysis<AliasAnalysis>().getLocation(SI);
        while (InstDep.isClobber() && isa<StoreInst>(InstDep.getInst()) &&
               InstDep.getInst() != &BB.front())
          InstDep = MD.getPointerDependencyFrom(Loc, false, InstDep.getInst(),
                                                &BB);
      }
        
      // If not a definite must-alias dependency, ignore it.
      if (!InstDep.isDef())
        continue;
    }
    
    // If this is a store-store dependence, then the previous store is dead so
    // long as this store is at least as big as it.
    if (doesClobberMemory(InstDep.getInst())) {
      Instruction *DepStore = InstDep.getInst();
      if (isStoreAtLeastAsWideAs(Inst, DepStore, TD) &&
          isElidable(DepStore)) {
        // Delete the store and now-dead instructions that feed it.
        MadeChange = true;

        // DeleteDeadInstruction can delete the current instruction in loop
        // cases, reset BBI.
        BBI = Inst;
    // If we're storing the same value back to a pointer that we just
    // loaded from, then the store can be removed.
    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
      if (LoadInst *DepLoad = dyn_cast<LoadInst>(InstDep.getInst())) {
        if (SI->getPointerOperand() == DepLoad->getPointerOperand() &&
            SI->getOperand(0) == DepLoad) {
          // DeleteDeadInstruction can delete the current instruction.  Save BBI
          // in case we need it.
          WeakVH NextInst(BBI);
          
          DeleteDeadInstruction(SI);
          
          if (NextInst == 0)  // Next instruction deleted.
            BBI = BB.begin();
          else if (BBI != BB.begin())  // Revisit this instruction if possible.
            --BBI;
      }
    }
    
    // If this is a lifetime end marker, we can throw away the store.
    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(InstDep.getInst())) {
      if (II->getIntrinsicID() == Intrinsic::lifetime_end) {
        // Delete the store and now-dead instructions that feed it.
        // DeleteDeadInstruction can delete the current instruction.  Save BBI
        // in case we need it.
        WeakVH NextInst(BBI);
        
        
        if (NextInst == 0)  // Next instruction deleted.
          BBI = BB.begin();
        else if (BBI != BB.begin())  // Revisit this instruction if possible.
  // If this block ends in a return, unwind, or unreachable, all allocas are
  // dead at its end, which means stores to them are also dead.
  if (BB.getTerminator()->getNumSuccessors() == 0)
    MadeChange |= handleEndBlock(BB);
/// handleFreeWithNonTrivialDependency - Handle frees of entire structures whose
/// dependency is a store to a field of that structure.
bool DSE::handleFreeWithNonTrivialDependency(const CallInst *F,
  MemoryDependenceAnalysis &MD = getAnalysis<MemoryDependenceAnalysis>();
  do {
    Instruction *Dependency = Dep.getInst();
    if (!Dependency || !doesClobberMemory(Dependency) || !isElidable(Dependency))
      return false;
    Value *DepPointer = getPointerOperand(Dependency)->getUnderlyingObject();
    // Check for aliasing.
    if (AA.alias(F->getArgOperand(0), 1, DepPointer, 1) !=
           AliasAnalysis::MustAlias)
      return false;
    // DCE instructions only used to calculate that store
    DeleteDeadInstruction(Dependency);
    ++NumFastStores;

    // Inst's old Dependency is now deleted. Compute the next dependency,
    // which may also be dead, as in
    //    s[0] = 0;
    //    s[1] = 0; // This has just been deleted.
    //    free(s);
    Dep = MD.getDependency(Inst);
  } while (!Dep.isNonLocal());
Owen Anderson's avatar
Owen Anderson committed
/// handleEndBlock - Remove dead stores to stack-allocated locations in the
/// function end block.  Ex:
/// %A = alloca i32
/// ...
/// store i32 1, i32* %A
/// ret void
bool DSE::handleEndBlock(BasicBlock &BB) {
  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
  
  bool MadeChange = false;
  
  // Pointers alloca'd in this function are dead in the end block
  // Find all of the alloca'd pointers in the entry block.
  BasicBlock *Entry = BB.getParent()->begin();
  for (BasicBlock::iterator I = Entry->begin(), E = Entry->end(); I != E; ++I)
    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
      deadPointers.insert(AI);
  
  // Treat byval arguments the same, stores to them are dead at the end of the
  // function.
  for (Function::arg_iterator AI = BB.getParent()->arg_begin(),
       AE = BB.getParent()->arg_end(); AI != AE; ++AI)
    if (AI->hasByValAttr())
      deadPointers.insert(AI);
  
  // Scan the basic block backwards
  for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){
    --BBI;
    
    // If we find a store whose pointer is dead.
    if (doesClobberMemory(BBI)) {
      if (isElidable(BBI)) {
        // See through pointer-to-pointer bitcasts
        Value *pointerOperand = getPointerOperand(BBI)->getUnderlyingObject();
        // Alloca'd pointers or byval arguments (which are functionally like
        // alloca's) are valid candidates for removal.
          // DCE instructions only used to calculate that store.
          DeleteDeadInstruction(Dead, &deadPointers);
          MadeChange = true;
      // Because a memcpy or memmove is also a load, we can't skip it if we
      // didn't remove it.
      if (!isa<MemTransferInst>(BBI))
    uint64_t killPointerSize = AliasAnalysis::UnknownSize;
    
    // If we encounter a use of the pointer, it is no longer considered dead
    if (LoadInst *L = dyn_cast<LoadInst>(BBI)) {
Nate Begeman's avatar
Nate Begeman committed
      // However, if this load is unused and not volatile, we can go ahead and
      // remove it, and not have to worry about it making our pointer undead!
      if (L->use_empty() && !L->isVolatile()) {
        DeleteDeadInstruction(L, &deadPointers);
    } else if (VAArgInst *V = dyn_cast<VAArgInst>(BBI)) {
    } else if (isa<MemTransferInst>(BBI) &&
               isa<ConstantInt>(cast<MemTransferInst>(BBI)->getLength())) {
      killPointer = cast<MemTransferInst>(BBI)->getSource();
                       cast<MemTransferInst>(BBI)->getLength())->getZExtValue();
    } else if (AllocaInst *A = dyn_cast<AllocaInst>(BBI)) {
      
      // Dead alloca's can be DCE'd when we reach them
        DeleteDeadInstruction(A, &deadPointers);
    } else if (CallSite CS = cast<Value>(BBI)) {
      // If this call does not access memory, it can't
      // be undeadifying any of our pointers.
      if (AA.doesNotAccessMemory(CS))
      // Remove any pointers made undead by the call from the dead set
      std::vector<Value*> dead;
      for (SmallPtrSet<Value*, 64>::iterator I = deadPointers.begin(),
        // HACK: if we detect that our AA is imprecise, it's not
        // worth it to scan the rest of the deadPointers set.  Just
        // assume that the AA will return ModRef for everything, and
        // go ahead and bail.
        if (modRef >= 16 && other == 0) {
          deadPointers.clear();
          return MadeChange;
        }
        AliasAnalysis::ModRefResult A = AA.getModRefInfo(CS, *I,
                                                         getPointerSize(*I));
        if (A == AliasAnalysis::ModRef || A == AliasAnalysis::Ref)
      for (std::vector<Value*>::iterator I = dead.begin(), E = dead.end();
    } else if (isInstructionTriviallyDead(BBI)) {
      // For any non-memory-affecting non-terminators, DCE them as we reach them
      DeleteDeadInstruction(Inst, &deadPointers);

    killPointer = killPointer->getUnderlyingObject();

    MadeChange |= RemoveUndeadPointers(killPointer, killPointerSize, BBI,
/// RemoveUndeadPointers - check for uses of a pointer that make it
/// undead when scanning for dead stores to alloca's.
bool DSE::RemoveUndeadPointers(Value *killPointer, uint64_t killPointerSize,
                               SmallPtrSet<Value*, 64> &deadPointers) {
  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
  // If the kill pointer can be easily reduced to an alloca,
  // don't bother doing extraneous AA queries.
  if (deadPointers.count(killPointer)) {
    deadPointers.erase(killPointer);
  // A global can't be in the dead pointer set.
  if (isa<GlobalValue>(killPointer))
    return false;
  
  SmallVector<Value*, 16> undead;
  for (SmallPtrSet<Value*, 64>::iterator I = deadPointers.begin(),
       E = deadPointers.end(); I != E; ++I) {
    AliasAnalysis::AliasResult A = AA.alias(*I, getPointerSize(*I),

    // If it must-alias and a store, we can delete it
    if (isa<StoreInst>(BBI) && A == AliasAnalysis::MustAlias) {
      StoreInst *S = cast<StoreInst>(BBI);
      DeleteDeadInstruction(S, &deadPointers);
    } else if (A != AliasAnalysis::NoAlias)
      undead.push_back(*I);
  for (SmallVector<Value*, 16>::iterator I = undead.begin(), E = undead.end();
/// DeleteDeadInstruction - Delete this instruction.  Before we do, go through
/// and zero out all the operands of this instruction.  If any of them become
/// dead, delete them and the computation tree that feeds them.
///
/// If ValueSet is non-null, remove any deleted instructions from it as well.
///
void DSE::DeleteDeadInstruction(Instruction *I,
                                SmallPtrSet<Value*, 64> *ValueSet) {
  SmallVector<Instruction*, 32> NowDeadInsts;
  
  NowDeadInsts.push_back(I);
  --NumFastOther;

  // Before we touch this instruction, remove it from memdep!
  MemoryDependenceAnalysis &MDA = getAnalysis<MemoryDependenceAnalysis>();
  do {
    Instruction *DeadInst = NowDeadInsts.pop_back_val();
    
    ++NumFastOther;
    
    // This instruction is dead, zap it, in stages.  Start by removing it from
    // MemDep, which needs to know the operands and needs it to be in the
    // function.
    MDA.removeInstruction(DeadInst);
    for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
      Value *Op = DeadInst->getOperand(op);
      DeadInst->setOperand(op, 0);
      
      // If this operand just became dead, add it to the NowDeadInsts list.
      if (!Op->use_empty()) continue;
      
      if (Instruction *OpI = dyn_cast<Instruction>(Op))
        if (isInstructionTriviallyDead(OpI))
          NowDeadInsts.push_back(OpI);
    }
    
    DeadInst->eraseFromParent();
    
    if (ValueSet) ValueSet->erase(DeadInst);
  } while (!NowDeadInsts.empty());
uint64_t DSE::getPointerSize(Value *V) const {
  if (TD) {
    if (AllocaInst *A = dyn_cast<AllocaInst>(V)) {
      // Get size information for the alloca
      if (ConstantInt *C = dyn_cast<ConstantInt>(A->getArraySize()))
        return C->getZExtValue() * TD->getTypeAllocSize(A->getAllocatedType());
    } else {
      assert(isa<Argument>(V) && "Expected AllocaInst or Argument!");
      const PointerType *PT = cast<PointerType>(V->getType());
      return TD->getTypeAllocSize(PT->getElementType());
    }
  }
  return AliasAnalysis::UnknownSize;