"llvm/lib/git@repo.hca.bsc.es:rferrer/llvm-epi-0.8.git" did not exist on "88214fbd12ba16d9bca5d4ab08034e0e86512b5c"
Newer
Older
//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the SplitAnalysis class as well as mutator functions for
// live range splitting.
//
//===----------------------------------------------------------------------===//
#include "SplitKit.h"
Jakob Stoklund Olesen
committed
#include "LiveRangeEdit.h"
Jakob Stoklund Olesen
committed
#include "VirtRegMap.h"
Jakob Stoklund Olesen
committed
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
Jakob Stoklund Olesen
committed
#include "llvm/CodeGen/MachineDominators.h"
Jakob Stoklund Olesen
committed
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
static cl::opt<bool>
AllowSplit("spiller-splits-edges",
cl::desc("Allow critical edge splitting during spilling"));
//===----------------------------------------------------------------------===//
// Split Analysis
//===----------------------------------------------------------------------===//
Jakob Stoklund Olesen
committed
SplitAnalysis::SplitAnalysis(const MachineFunction &mf,
const LiveIntervals &lis,
const MachineLoopInfo &mli)
: MF(mf),
LIS(lis),
Loops(mli),
TII(*mf.getTarget().getInstrInfo()),
CurLI(0) {}
void SplitAnalysis::clear() {
UseSlots.clear();
UsingInstrs.clear();
UsingBlocks.clear();
UsingLoops.clear();
CurLI = 0;
}
bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) {
MachineBasicBlock *T, *F;
SmallVector<MachineOperand, 4> Cond;
return !TII.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond);
/// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
const MachineRegisterInfo &MRI = MF.getRegInfo();
for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(CurLI->reg);
MachineInstr *MI = I.skipInstruction();) {
if (MI->isDebugValue() || !UsingInstrs.insert(MI))
continue;
UseSlots.push_back(LIS.getInstructionIndex(MI).getDefIndex());
MachineBasicBlock *MBB = MI->getParent();
if (UsingBlocks[MBB]++)
continue;
for (MachineLoop *Loop = Loops.getLoopFor(MBB); Loop;
Loop = Loop->getParentLoop())
UsingLoops[Loop]++;
array_pod_sort(UseSlots.begin(), UseSlots.end());
<< UsingInstrs.size() << " instrs, "
<< UsingBlocks.size() << " blocks, "
<< UsingLoops.size() << " loops.\n");
}
void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const {
for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) {
unsigned count = UsingBlocks.lookup(*I);
OS << " BB#" << (*I)->getNumber();
if (count)
OS << '(' << count << ')';
}
}
// Get three sets of basic blocks surrounding a loop: Blocks inside the loop,
// predecessor blocks, and exit blocks.
void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) {
Blocks.clear();
// Blocks in the loop.
Blocks.Loop.insert(Loop->block_begin(), Loop->block_end());
// Predecessor blocks.
const MachineBasicBlock *Header = Loop->getHeader();
for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(),
E = Header->pred_end(); I != E; ++I)
if (!Blocks.Loop.count(*I))
Blocks.Preds.insert(*I);
// Exit blocks.
for (MachineLoop::block_iterator I = Loop->block_begin(),
E = Loop->block_end(); I != E; ++I) {
const MachineBasicBlock *MBB = *I;
for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
SE = MBB->succ_end(); SI != SE; ++SI)
if (!Blocks.Loop.count(*SI))
Blocks.Exits.insert(*SI);
}
}
void SplitAnalysis::print(const LoopBlocks &B, raw_ostream &OS) const {
OS << "Loop:";
print(B.Loop, OS);
OS << ", preds:";
print(B.Preds, OS);
OS << ", exits:";
print(B.Exits, OS);
}
/// analyzeLoopPeripheralUse - Return an enum describing how CurLI is used in
/// and around the Loop.
SplitAnalysis::LoopPeripheralUse SplitAnalysis::
analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) {
LoopPeripheralUse use = ContainedInLoop;
for (BlockCountMap::iterator I = UsingBlocks.begin(), E = UsingBlocks.end();
I != E; ++I) {
const MachineBasicBlock *MBB = I->first;
// Is this a peripheral block?
if (use < MultiPeripheral &&
(Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) {
if (I->second > 1) use = MultiPeripheral;
else use = SinglePeripheral;
continue;
}
// Is it a loop block?
continue;
// It must be an unrelated block.
DEBUG(dbgs() << ", outside: BB#" << MBB->getNumber());
return OutsideLoop;
}
return use;
}
/// getCriticalExits - It may be necessary to partially break critical edges
/// leaving the loop if an exit block has predecessors from outside the loop
/// periphery.
void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
BlockPtrSet &CriticalExits) {
CriticalExits.clear();
// A critical exit block has CurLI live-in, and has a predecessor that is not
// in the loop nor a loop predecessor. For such an exit block, the edges
// carrying the new variable must be moved to a new pre-exit block.
for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end();
I != E; ++I) {
const MachineBasicBlock *Exit = *I;
// A single-predecessor exit block is definitely not a critical edge.
if (Exit->pred_size() == 1)
// This exit may not have CurLI live in at all. No need to split.
if (!LIS.isLiveInToMBB(*CurLI, Exit))
// Does this exit block have a predecessor that is not a loop block or loop
// predecessor?
for (MachineBasicBlock::const_pred_iterator PI = Exit->pred_begin(),
PE = Exit->pred_end(); PI != PE; ++PI) {
const MachineBasicBlock *Pred = *PI;
if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred))
continue;
// This is a critical exit block, and we need to split the exit edge.
CriticalExits.insert(Exit);
Jakob Stoklund Olesen
committed
void SplitAnalysis::getCriticalPreds(const SplitAnalysis::LoopBlocks &Blocks,
BlockPtrSet &CriticalPreds) {
CriticalPreds.clear();
// A critical predecessor block has CurLI live-out, and has a successor that
// has CurLI live-in and is not in the loop nor a loop exit block. For such a
Jakob Stoklund Olesen
committed
// predecessor block, we must carry the value in both the 'inside' and
// 'outside' registers.
for (BlockPtrSet::iterator I = Blocks.Preds.begin(), E = Blocks.Preds.end();
I != E; ++I) {
const MachineBasicBlock *Pred = *I;
// Definitely not a critical edge.
if (Pred->succ_size() == 1)
continue;
// This block may not have CurLI live out at all if there is a PHI.
if (!LIS.isLiveOutOfMBB(*CurLI, Pred))
Jakob Stoklund Olesen
committed
continue;
// Does this block have a successor outside the loop?
for (MachineBasicBlock::const_pred_iterator SI = Pred->succ_begin(),
SE = Pred->succ_end(); SI != SE; ++SI) {
const MachineBasicBlock *Succ = *SI;
if (Blocks.Loop.count(Succ) || Blocks.Exits.count(Succ))
continue;
if (!LIS.isLiveInToMBB(*CurLI, Succ))
Jakob Stoklund Olesen
committed
continue;
// This is a critical predecessor block.
CriticalPreds.insert(Pred);
break;
}
}
}
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
/// canSplitCriticalExits - Return true if it is possible to insert new exit
/// blocks before the blocks in CriticalExits.
bool
SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
BlockPtrSet &CriticalExits) {
// If we don't allow critical edge splitting, require no critical exits.
if (!AllowSplit)
return CriticalExits.empty();
for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end();
I != E; ++I) {
const MachineBasicBlock *Succ = *I;
// We want to insert a new pre-exit MBB before Succ, and change all the
// in-loop blocks to branch to the pre-exit instead of Succ.
// Check that all the in-loop predecessors can be changed.
for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(),
PE = Succ->pred_end(); PI != PE; ++PI) {
const MachineBasicBlock *Pred = *PI;
// The external predecessors won't be altered.
if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred))
continue;
if (!canAnalyzeBranch(Pred))
return false;
}
// If Succ's layout predecessor falls through, that too must be analyzable.
// We need to insert the pre-exit block in the gap.
MachineFunction::const_iterator MFI = Succ;
if (MFI == MF.begin())
continue;
if (!canAnalyzeBranch(--MFI))
return false;
}
// No problems found.
return true;
}
void SplitAnalysis::analyze(const LiveInterval *li) {
clear();
}
void SplitAnalysis::getSplitLoops(LoopPtrSet &Loops) {
assert(CurLI && "Call analyze() before getSplitLoops");
if (UsingLoops.empty())
LoopBlocks Blocks;
BlockPtrSet CriticalExits;
// We split around loops where CurLI is used outside the periphery.
for (LoopCountMap::const_iterator I = UsingLoops.begin(),
E = UsingLoops.end(); I != E; ++I) {
Jakob Stoklund Olesen
committed
const MachineLoop *Loop = I->first;
getLoopBlocks(Loop, Blocks);
DEBUG({ dbgs() << " "; print(Blocks, dbgs()); });
switch(analyzeLoopPeripheralUse(Blocks)) {
case OutsideLoop:
break;
case MultiPeripheral:
Jakob Stoklund Olesen
committed
// FIXME: We could split a live range with multiple uses in a peripheral
// block and still make progress. However, it is possible that splitting
// another live range will insert copies into a peripheral block, and
// there is a small chance we can enter an infinite loop, inserting copies
Jakob Stoklund Olesen
committed
// forever.
// For safety, stick to splitting live ranges with uses outside the
// periphery.
DEBUG(dbgs() << ": multiple peripheral uses");
break;
continue;
case SinglePeripheral:
continue;
}
// Will it be possible to split around this loop?
getCriticalExits(Blocks, CriticalExits);
DEBUG(dbgs() << ": " << CriticalExits.size() << " critical exits\n");
if (!canSplitCriticalExits(Blocks, CriticalExits))
continue;
// This is a possible split.
Jakob Stoklund Olesen
committed
Loops.insert(Loop);
DEBUG(dbgs() << " getSplitLoops found " << Loops.size()
Jakob Stoklund Olesen
committed
<< " candidate loops.\n");
const MachineLoop *SplitAnalysis::getBestSplitLoop() {
LoopPtrSet Loops;
getSplitLoops(Loops);
if (Loops.empty())
return 0;
// Pick the earliest loop.
// FIXME: Are there other heuristics to consider?
const MachineLoop *Best = 0;
SlotIndex BestIdx;
for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E;
++I) {
SlotIndex Idx = LIS.getMBBStartIdx((*I)->getHeader());
if (!Best || Idx < BestIdx)
Best = *I, BestIdx = Idx;
}
DEBUG(dbgs() << " getBestSplitLoop found " << *Best);
return Best;
}
/// isBypassLoop - Return true if CurLI is live through Loop and has no uses
/// inside the loop. Bypass loops are candidates for splitting because it can
/// prevent interference inside the loop.
bool SplitAnalysis::isBypassLoop(const MachineLoop *Loop) {
// If CurLI is live into the loop header and there are no uses in the loop, it
// must be live in the entire loop and live on at least one exiting edge.
return !UsingLoops.count(Loop) &&
LIS.isLiveInToMBB(*CurLI, Loop->getHeader());
}
/// getBypassLoops - Get all the maximal bypass loops. These are the bypass
/// loops whose parent is not a bypass loop.
void SplitAnalysis::getBypassLoops(LoopPtrSet &BypassLoops) {
SmallVector<MachineLoop*, 8> Todo(Loops.begin(), Loops.end());
MachineLoop *Loop = Todo.pop_back_val();
if (!UsingLoops.count(Loop)) {
// This is either a bypass loop or completely irrelevant.
if (LIS.isLiveInToMBB(*CurLI, Loop->getHeader()))
BypassLoops.insert(Loop);
// Either way, skip the child loops.
continue;
}
// The child loops may be bypass loops.
Todo.append(Loop->begin(), Loop->end());
}
}
//===----------------------------------------------------------------------===//
// LiveIntervalMap
//===----------------------------------------------------------------------===//
Jakob Stoklund Olesen
committed
// Work around the fact that the std::pair constructors are broken for pointer
// pairs in some implementations. makeVV(x, 0) works.
static inline std::pair<const VNInfo*, VNInfo*>
makeVV(const VNInfo *a, VNInfo *b) {
return std::make_pair(a, b);
}
Jakob Stoklund Olesen
committed
void LiveIntervalMap::reset(LiveInterval *li) {
LI = li;
Values.clear();
LiveOutCache.clear();
Jakob Stoklund Olesen
committed
}
Jakob Stoklund Olesen
committed
bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const {
ValueMap::const_iterator i = Values.find(ParentVNI);
return i != Values.end() && i->second == 0;
Jakob Stoklund Olesen
committed
}
// defValue - Introduce a LI def for ParentVNI that could be later than
// ParentVNI->def.
VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) {
assert(LI && "call reset first");
assert(ParentVNI && "Mapping NULL value");
assert(Idx.isValid() && "Invalid SlotIndex");
assert(ParentLI.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
Jakob Stoklund Olesen
committed
// Create a new value.
VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator());
Jakob Stoklund Olesen
committed
// Preserve the PHIDef bit.
if (ParentVNI->isPHIDef() && Idx == ParentVNI->def)
VNI->setIsPHIDef(true);
Jakob Stoklund Olesen
committed
// Use insert for lookup, so we can add missing values with a second lookup.
std::pair<ValueMap::iterator,bool> InsP =
Values.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0));
Jakob Stoklund Olesen
committed
// This is now a complex def. Mark with a NULL in valueMap.
Jakob Stoklund Olesen
committed
if (!InsP.second)
InsP.first->second = 0;
return VNI;
}
Jakob Stoklund Olesen
committed
// mapValue - Find the mapped value for ParentVNI at Idx.
// Potentially create phi-def values.
Jakob Stoklund Olesen
committed
VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx,
bool *simple) {
assert(LI && "call reset first");
assert(ParentVNI && "Mapping NULL value");
assert(Idx.isValid() && "Invalid SlotIndex");
assert(ParentLI.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
// Use insert for lookup, so we can add missing values with a second lookup.
std::pair<ValueMap::iterator,bool> InsP =
Values.insert(makeVV(ParentVNI, 0));
// This was an unknown value. Create a simple mapping.
Jakob Stoklund Olesen
committed
if (InsP.second) {
if (simple) *simple = true;
return InsP.first->second = LI->createValueCopy(ParentVNI,
LIS.getVNInfoAllocator());
Jakob Stoklund Olesen
committed
}
// This was a simple mapped value.
Jakob Stoklund Olesen
committed
if (InsP.first->second) {
if (simple) *simple = true;
return InsP.first->second;
Jakob Stoklund Olesen
committed
}
// This is a complex mapped value. There may be multiple defs, and we may need
// to create phi-defs.
Jakob Stoklund Olesen
committed
if (simple) *simple = false;
MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx);
assert(IdxMBB && "No MBB at Idx");
// Is there a def in the same MBB we can extend?
if (VNInfo *VNI = extendTo(IdxMBB, Idx))
return VNI;
// Now for the fun part. We know that ParentVNI potentially has multiple defs,
// and we may need to create even more phi-defs to preserve VNInfo SSA form.
Jakob Stoklund Olesen
committed
// Perform a search for all predecessor blocks where we know the dominating
// VNInfo. Insert phi-def VNInfos along the path back to IdxMBB.
DEBUG(dbgs() << "\n Reaching defs for BB#" << IdxMBB->getNumber()
<< " at " << Idx << " in " << *LI << '\n');
Jakob Stoklund Olesen
committed
// Blocks where LI should be live-in.
Jakob Stoklund Olesen
committed
SmallVector<MachineDomTreeNode*, 16> LiveIn;
LiveIn.push_back(MDT[IdxMBB]);
Jakob Stoklund Olesen
committed
// Using LiveOutCache as a visited set, perform a BFS for all reaching defs.
Jakob Stoklund Olesen
committed
for (unsigned i = 0; i != LiveIn.size(); ++i) {
MachineBasicBlock *MBB = LiveIn[i]->getBlock();
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
PE = MBB->pred_end(); PI != PE; ++PI) {
MachineBasicBlock *Pred = *PI;
// Is this a known live-out block?
std::pair<LiveOutMap::iterator,bool> LOIP =
LiveOutCache.insert(std::make_pair(Pred, LiveOutPair()));
Jakob Stoklund Olesen
committed
// Yes, we have been here before.
if (!LOIP.second) {
DEBUG(if (VNInfo *VNI = LOIP.first->second.first)
dbgs() << " known valno #" << VNI->id
Jakob Stoklund Olesen
committed
<< " at BB#" << Pred->getNumber() << '\n');
continue;
}
// Does Pred provide a live-out value?
SlotIndex Last = LIS.getMBBEndIdx(Pred).getPrevSlot();
Jakob Stoklund Olesen
committed
if (VNInfo *VNI = extendTo(Pred, Last)) {
MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(VNI->def);
Jakob Stoklund Olesen
committed
DEBUG(dbgs() << " found valno #" << VNI->id
Jakob Stoklund Olesen
committed
<< " from BB#" << DefMBB->getNumber()
<< " at BB#" << Pred->getNumber() << '\n');
Jakob Stoklund Olesen
committed
LiveOutPair &LOP = LOIP.first->second;
LOP.first = VNI;
LOP.second = MDT[DefMBB];
Jakob Stoklund Olesen
committed
continue;
}
// No, we need a live-in value for Pred as well
if (Pred != IdxMBB)
LiveIn.push_back(MDT[Pred]);
Jakob Stoklund Olesen
committed
}
Jakob Stoklund Olesen
committed
// We may need to add phi-def values to preserve the SSA form.
// This is essentially the same iterative algorithm that SSAUpdater uses,
// except we already have a dominator tree, so we don't have to recompute it.
VNInfo *IdxVNI = 0;
unsigned Changes;
do {
Changes = 0;
DEBUG(dbgs() << " Iterating over " << LiveIn.size() << " blocks.\n");
// Propagate live-out values down the dominator tree, inserting phi-defs when
// necessary. Since LiveIn was created by a BFS, going backwards makes it more
// likely for us to visit immediate dominators before their children.
for (unsigned i = LiveIn.size(); i; --i) {
MachineDomTreeNode *Node = LiveIn[i-1];
MachineBasicBlock *MBB = Node->getBlock();
MachineDomTreeNode *IDom = Node->getIDom();
LiveOutPair IDomValue;
// We need a live-in value to a block with no immediate dominator?
// This is probably an unreachable block that has survived somehow.
bool needPHI = !IDom;
// Get the IDom live-out value.
if (!needPHI) {
LiveOutMap::iterator I = LiveOutCache.find(IDom->getBlock());
if (I != LiveOutCache.end())
Jakob Stoklund Olesen
committed
IDomValue = I->second;
else
// If IDom is outside our set of live-out blocks, there must be new
// defs, and we need a phi-def here.
needPHI = true;
}
Jakob Stoklund Olesen
committed
Jakob Stoklund Olesen
committed
// IDom dominates all of our predecessors, but it may not be the immediate
// dominator. Check if any of them have live-out values that are properly
// dominated by IDom. If so, we need a phi-def here.
if (!needPHI) {
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
PE = MBB->pred_end(); PI != PE; ++PI) {
LiveOutPair Value = LiveOutCache[*PI];
Jakob Stoklund Olesen
committed
if (!Value.first || Value.first == IDomValue.first)
continue;
// This predecessor is carrying something other than IDomValue.
// It could be because IDomValue hasn't propagated yet, or it could be
// because MBB is in the dominance frontier of that value.
if (MDT.dominates(IDom, Value.second)) {
Jakob Stoklund Olesen
committed
needPHI = true;
break;
}
}
}
Jakob Stoklund Olesen
committed
Jakob Stoklund Olesen
committed
// Create a phi-def if required.
if (needPHI) {
++Changes;
SlotIndex Start = LIS.getMBBStartIdx(MBB);
VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator());
Jakob Stoklund Olesen
committed
VNI->setIsPHIDef(true);
DEBUG(dbgs() << " - BB#" << MBB->getNumber()
<< " phi-def #" << VNI->id << " at " << Start << '\n');
// We no longer need LI to be live-in.
Jakob Stoklund Olesen
committed
LiveIn.erase(LiveIn.begin()+(i-1));
// Blocks in LiveIn are either IdxMBB, or have a value live-through.
if (MBB == IdxMBB)
IdxVNI = VNI;
// Check if we need to update live-out info.
LiveOutMap::iterator I = LiveOutCache.find(MBB);
if (I == LiveOutCache.end() || I->second.second == Node) {
Jakob Stoklund Olesen
committed
// We already have a live-out defined in MBB, so this must be IdxMBB.
assert(MBB == IdxMBB && "Adding phi-def to known live-out");
LI->addRange(LiveRange(Start, Idx.getNextSlot(), VNI));
Jakob Stoklund Olesen
committed
} else {
// This phi-def is also live-out, so color the whole block.
LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
Jakob Stoklund Olesen
committed
I->second = LiveOutPair(VNI, Node);
}
} else if (IDomValue.first) {
Jakob Stoklund Olesen
committed
// No phi-def here. Remember incoming value for IdxMBB.
Jakob Stoklund Olesen
committed
if (MBB == IdxMBB)
IdxVNI = IDomValue.first;
Jakob Stoklund Olesen
committed
// Propagate IDomValue if needed:
// MBB is live-out and doesn't define its own value.
LiveOutMap::iterator I = LiveOutCache.find(MBB);
if (I != LiveOutCache.end() && I->second.second != Node &&
Jakob Stoklund Olesen
committed
I->second.first != IDomValue.first) {
Jakob Stoklund Olesen
committed
++Changes;
I->second = IDomValue;
DEBUG(dbgs() << " - BB#" << MBB->getNumber()
<< " idom valno #" << IDomValue.first->id
<< " from BB#" << IDom->getBlock()->getNumber() << '\n');
}
Jakob Stoklund Olesen
committed
}
Jakob Stoklund Olesen
committed
DEBUG(dbgs() << " - made " << Changes << " changes.\n");
} while (Changes);
Jakob Stoklund Olesen
committed
assert(IdxVNI && "Didn't find value for Idx");
Jakob Stoklund Olesen
committed
#ifndef NDEBUG
// Check the LiveOutCache invariants.
for (LiveOutMap::iterator I = LiveOutCache.begin(), E = LiveOutCache.end();
Jakob Stoklund Olesen
committed
I != E; ++I) {
assert(I->first && "Null MBB entry in cache");
assert(I->second.first && "Null VNInfo in cache");
assert(I->second.second && "Null DomTreeNode in cache");
if (I->second.second->getBlock() == I->first)
continue;
for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(),
PE = I->first->pred_end(); PI != PE; ++PI)
assert(LiveOutCache.lookup(*PI) == I->second && "Bad invariant");
Jakob Stoklund Olesen
committed
}
#endif
Jakob Stoklund Olesen
committed
// Since we went through the trouble of a full BFS visiting all reaching defs,
// the values in LiveIn are now accurate. No more phi-defs are needed
// for these blocks, so we can color the live ranges.
// This makes the next mapValue call much faster.
Jakob Stoklund Olesen
committed
for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) {
MachineBasicBlock *MBB = LiveIn[i]->getBlock();
SlotIndex Start = LIS.getMBBStartIdx(MBB);
Jakob Stoklund Olesen
committed
if (MBB == IdxMBB) {
LI->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI));
Jakob Stoklund Olesen
committed
continue;
}
// Anything in LiveIn other than IdxMBB is live-through.
VNInfo *VNI = LiveOutCache.lookup(MBB).first;
Jakob Stoklund Olesen
committed
assert(VNI && "Missing block value");
LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
}
return IdxVNI;
}
Jakob Stoklund Olesen
committed
#ifndef NDEBUG
void LiveIntervalMap::dumpCache() {
for (LiveOutMap::iterator I = LiveOutCache.begin(), E = LiveOutCache.end();
Jakob Stoklund Olesen
committed
I != E; ++I) {
assert(I->first && "Null MBB entry in cache");
assert(I->second.first && "Null VNInfo in cache");
assert(I->second.second && "Null DomTreeNode in cache");
dbgs() << " cache: BB#" << I->first->getNumber()
<< " has valno #" << I->second.first->id << " from BB#"
<< I->second.second->getBlock()->getNumber() << ", preds";
for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(),
PE = I->first->pred_end(); PI != PE; ++PI)
dbgs() << " BB#" << (*PI)->getNumber();
dbgs() << '\n';
}
dbgs() << " cache: " << LiveOutCache.size() << " entries.\n";
Jakob Stoklund Olesen
committed
}
#endif
// extendTo - Find the last LI value defined in MBB at or before Idx. The
// ParentLI is assumed to be live at Idx. Extend the live range to Idx.
// Return the found VNInfo, or NULL.
Jakob Stoklund Olesen
committed
VNInfo *LiveIntervalMap::extendTo(const MachineBasicBlock *MBB, SlotIndex Idx) {
assert(LI && "call reset first");
LiveInterval::iterator I = std::upper_bound(LI->begin(), LI->end(), Idx);
if (I == LI->begin())
return 0;
--I;
if (I->end <= LIS.getMBBStartIdx(MBB))
Jakob Stoklund Olesen
committed
if (I->end <= Idx)
I->end = Idx.getNextSlot();
return I->valno;
}
// addSimpleRange - Add a simple range from ParentLI to LI.
// ParentVNI must be live in the [Start;End) interval.
void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End,
const VNInfo *ParentVNI) {
assert(LI && "call reset first");
Jakob Stoklund Olesen
committed
bool simple;
VNInfo *VNI = mapValue(ParentVNI, Start, &simple);
// A simple mapping is easy.
if (simple) {
LI->addRange(LiveRange(Start, End, VNI));
return;
}
// ParentVNI is a complex value. We must map per MBB.
MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start);
MachineFunction::iterator MBBE = LIS.getMBBFromIndex(End.getPrevSlot());
if (MBB == MBBE) {
LI->addRange(LiveRange(Start, End, VNI));
return;
}
// First block.
LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
// Run sequence of full blocks.
for (++MBB; MBB != MBBE; ++MBB) {
Start = LIS.getMBBStartIdx(MBB);
LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB),
Jakob Stoklund Olesen
committed
mapValue(ParentVNI, Start)));
}
// Final block.
Start = LIS.getMBBStartIdx(MBB);
if (Start != End)
LI->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start)));
/// addRange - Add live ranges to LI where [Start;End) intersects ParentLI.
/// All needed values whose def is not inside [Start;End) must be defined
/// beforehand so mapValue will work.
void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) {
assert(LI && "call reset first");
LiveInterval::const_iterator B = ParentLI.begin(), E = ParentLI.end();
LiveInterval::const_iterator I = std::lower_bound(B, E, Start);
// Check if --I begins before Start and overlaps.
if (I != B) {
--I;
if (I->end > Start)
addSimpleRange(Start, std::min(End, I->end), I->valno);
++I;
}
// The remaining ranges begin after Start.
for (;I != E && I->start < End; ++I)
addSimpleRange(I->start, std::min(End, I->end), I->valno);
}
Jakob Stoklund Olesen
committed
Jakob Stoklund Olesen
committed
//===----------------------------------------------------------------------===//
// Split Editor
//===----------------------------------------------------------------------===//
/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
Jakob Stoklund Olesen
committed
SplitEditor::SplitEditor(SplitAnalysis &sa,
LiveIntervals &lis,
VirtRegMap &vrm,
MachineDominatorTree &mdt,
Jakob Stoklund Olesen
committed
LiveRangeEdit &edit)
: sa_(sa), LIS(lis), VRM(vrm),
MRI(vrm.getMachineFunction().getRegInfo()),
TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
Edit(edit),
Jakob Stoklund Olesen
committed
{
// We don't need an AliasAnalysis since we will only be performing
// cheap-as-a-copy remats anyway.
Edit.anyRematerializable(LIS, TII, 0);
Jakob Stoklund Olesen
committed
}
void SplitEditor::dump() const {
if (RegAssign.empty()) {
dbgs() << " empty\n";
return;
}
for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
dbgs() << '\n';
Jakob Stoklund Olesen
committed
}
VNInfo *ParentVNI,
SlotIndex UseIdx,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) {
MachineInstr *CopyMI = 0;
SlotIndex Def;
// Attempt cheap-as-a-copy rematerialization.
LiveRangeEdit::Remat RM(ParentVNI);
if (Edit.canRematerializeAt(RM, UseIdx, true, LIS)) {
Def = Edit.rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI);
} else {
// Can't remat, just insert a copy from parent.
CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
.addReg(Edit.getReg());
Def = LIS.InsertMachineInstrInMaps(CopyMI).getDefIndex();
}
// Define the value in Reg.
VNInfo *VNI = LIMappers[RegIdx].defValue(ParentVNI, Def);
VNI->setCopy(CopyMI);
// Add minimal liveness for the new value.
Edit.get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
if (RegIdx) {
if (UseIdx < Def)
UseIdx = Def;
RegAssign.insert(Def, UseIdx.getNextSlot(), RegIdx);
}
Jakob Stoklund Olesen
committed
/// Create a new virtual register and live interval.
void SplitEditor::openIntv() {
assert(!OpenIdx && "Previous LI not closed before openIntv");
// Create the complement as index 0.
if (Edit.empty()) {
Edit.create(MRI, LIS, VRM);
LIMappers.push_back(LiveIntervalMap(LIS, MDT, Edit.getParent()));
LIMappers.back().reset(Edit.get(0));
}
// Create the open interval.
OpenIdx = Edit.size();
Edit.create(MRI, LIS, VRM);
LIMappers.push_back(LiveIntervalMap(LIS, MDT, Edit.getParent()));
LIMappers[OpenIdx].reset(Edit.get(OpenIdx));
Jakob Stoklund Olesen
committed
}
/// enterIntvBefore - Enter OpenLI before the instruction at Idx. If CurLI is
/// not live before Idx, a COPY is not inserted.
void SplitEditor::enterIntvBefore(SlotIndex Idx) {
assert(OpenIdx && "openIntv not called before enterIntvBefore");
Idx = Idx.getUseIndex();
DEBUG(dbgs() << " enterIntvBefore " << Idx);
VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx);
Jakob Stoklund Olesen
committed
if (!ParentVNI) {
Jakob Stoklund Olesen
committed
return;
DEBUG(dbgs() << ": valno " << ParentVNI->id);
MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
Jakob Stoklund Olesen
committed
assert(MI && "enterIntvBefore called with invalid index");
defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
DEBUG(dump());
/// enterIntvAtEnd - Enter OpenLI at the end of MBB.
Jakob Stoklund Olesen
committed
void SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
SlotIndex End = LIS.getMBBEndIdx(&MBB).getPrevSlot();
DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << End);
VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(End);
Jakob Stoklund Olesen
committed
if (!ParentVNI) {
Jakob Stoklund Olesen
committed
return;
}
DEBUG(dbgs() << ": valno " << ParentVNI->id);
defFromParent(OpenIdx, ParentVNI, End, MBB, MBB.getFirstTerminator());
DEBUG(dump());
Jakob Stoklund Olesen
committed
}
/// useIntv - indicate that all instructions in MBB should use OpenLI.
void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
Jakob Stoklund Olesen
committed
}
void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
assert(OpenIdx && "openIntv not called before useIntv");
DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):");
RegAssign.insert(Start, End, OpenIdx);
DEBUG(dump());
Jakob Stoklund Olesen
committed
}
/// leaveIntvAfter - Leave OpenLI after the instruction at Idx.
void SplitEditor::leaveIntvAfter(SlotIndex Idx) {
assert(OpenIdx && "openIntv not called before leaveIntvAfter");
DEBUG(dbgs() << " leaveIntvAfter " << Idx);
Jakob Stoklund Olesen
committed
// The interval must be live beyond the instruction at Idx.
Idx = Idx.getBoundaryIndex();
VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx);
Jakob Stoklund Olesen
committed
if (!ParentVNI) {
DEBUG(dbgs() << ": valno " << ParentVNI->id);
MachineBasicBlock::iterator MII = LIS.getInstructionFromIndex(Idx);
*MII->getParent(), llvm::next(MII));
RegAssign.insert(Idx, VNI->def, OpenIdx);
DEBUG(dump());
/// leaveIntvAtTop - Leave the interval at the top of MBB.
/// Currently, only one value can leave the interval.
void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
SlotIndex Start = LIS.getMBBStartIdx(&MBB);
DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Start);
Jakob Stoklund Olesen
committed
if (!ParentVNI) {
MBB.SkipPHIsAndLabels(MBB.begin()));
RegAssign.insert(Start, VNI->def, OpenIdx);
DEBUG(dump());
Jakob Stoklund Olesen
committed
}
/// closeIntv - Indicate that we are done editing the currently open
Jakob Stoklund Olesen
committed
/// LiveInterval, and ranges can be trimmed.
assert(OpenIdx && "openIntv not called before closeIntv");
OpenIdx = 0;
Jakob Stoklund Olesen
committed
}
/// rewriteAssigned - Rewrite all uses of Edit.getReg().
void SplitEditor::rewriteAssigned() {
for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit.getReg()),
RE = MRI.reg_end(); RI != RE;) {
Jakob Stoklund Olesen
committed
MachineOperand &MO = RI.getOperand();
MachineInstr *MI = MO.getParent();
++RI;
// LiveDebugVariables should have handled all DBG_VALUE instructions.
Jakob Stoklund Olesen
committed
if (MI->isDebugValue()) {
DEBUG(dbgs() << "Zapping " << *MI);
MO.setReg(0);
continue;
}
SlotIndex Idx = LIS.getInstructionIndex(MI);
Jakob Stoklund Olesen
committed
Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
// Rewrite to the mapped register at Idx.
unsigned RegIdx = RegAssign.lookup(Idx);
MO.setReg(Edit.get(RegIdx)->reg);
DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t'
<< Idx << ':' << RegIdx << '\t' << *MI);
// Extend liveness to Idx.
const VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx);
LIMappers[RegIdx].mapValue(ParentVNI, Idx);
Jakob Stoklund Olesen
committed
}
}
/// rewriteSplit - Rewrite uses of Intvs[0] according to the ConEQ mapping.
void SplitEditor::rewriteComponents(const SmallVectorImpl<LiveInterval*> &Intvs,
const ConnectedVNInfoEqClasses &ConEq) {
for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Intvs[0]->reg),
RE = MRI.reg_end(); RI != RE;) {
MachineOperand &MO = RI.getOperand();
MachineInstr *MI = MO.getParent();
++RI;
if (MO.isUse() && MO.isUndef())
continue;
// DBG_VALUE instructions should have been eliminated earlier.
SlotIndex Idx = LIS.getInstructionIndex(MI);
Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t'
<< Idx << ':');
const VNInfo *VNI = Intvs[0]->getVNInfoAt(Idx);
assert(VNI && "Interval not live at use.");
MO.setReg(Intvs[ConEq.getEqClass(VNI)]->reg);
DEBUG(dbgs() << VNI->id << '\t' << *MI);
Jakob Stoklund Olesen
committed
}
Eric Christopher
committed
}
Jakob Stoklund Olesen
committed
void SplitEditor::finish() {
assert(OpenIdx == 0 && "Previous LI not closed before rewrite");
// At this point, the live intervals in Edit contain VNInfos corresponding to
// the inserted copies.
// Add the original defs from the parent interval.
for (LiveInterval::const_vni_iterator I = Edit.getParent().vni_begin(),
E = Edit.getParent().vni_end(); I != E; ++I) {
const VNInfo *ParentVNI = *I;
LiveIntervalMap &LIM = LIMappers[RegAssign.lookup(ParentVNI->def)];
VNInfo *VNI = LIM.defValue(ParentVNI, ParentVNI->def);
LIM.getLI()->addRange(LiveRange(ParentVNI->def,
ParentVNI->def.getNextSlot(), VNI));
// Mark all values as complex to force liveness computation.
// This should really only be necessary for remat victims, but we are lazy.
LIM.markComplexMapped(ParentVNI);
Jakob Stoklund Olesen
committed
}
Jakob Stoklund Olesen
committed
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
#ifndef NDEBUG
// Every new interval must have a def by now, otherwise the split is bogus.
for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I)
assert((*I)->hasAtLeastOneValue() && "Split interval has no value");
#endif
// FIXME: Don't recompute the liveness of all values, infer it from the
// overlaps between the parent live interval and RegAssign.
// The mapValue algorithm is only necessary when:
// - The parent value maps to multiple defs, and new phis are needed, or
// - The value has been rematerialized before some uses, and we want to
// minimize the live range so it only reaches the remaining uses.
// All other values have simple liveness that can be computed from RegAssign
// and the parent live interval.
// Extend live ranges to be live-out for successor PHI values.
for (LiveInterval::const_vni_iterator I = Edit.getParent().vni_begin(),
E = Edit.getParent().vni_end(); I != E; ++I) {
const VNInfo *PHIVNI = *I;
if (!PHIVNI->isPHIDef())
continue;
LiveIntervalMap &LIM = LIMappers[RegAssign.lookup(PHIVNI->def)];
MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
PE = MBB->pred_end(); PI != PE; ++PI) {
SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot();
// The predecessor may not have a live-out value. That is OK, like an
// undef PHI operand.
if (VNInfo *VNI = Edit.getParent().getVNInfoAt(End))
LIM.mapValue(VNI, End);