"llvm/lib/git@repo.hca.bsc.es:rferrer/llvm-epi-0.8.git" did not exist on "e359d9b771d8524b64a874bcb86ebac4c1a127be"
Newer
Older
//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
Alkis Evlogimenos
committed
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
Alkis Evlogimenos
committed
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveInterval analysis pass which is used
// by the Linear Scan Register allocator. This pass linearizes the
// basic blocks of the function in DFS order and uses the
// LiveVariables pass to conservatively compute live intervals for
// each virtual and physical register.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "liveintervals"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "VirtRegMap.h"
#include "llvm/Value.h"
Dan Gohman
committed
#include "llvm/Analysis/AliasAnalysis.h"
Alkis Evlogimenos
committed
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
Evan Cheng
committed
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
Alkis Evlogimenos
committed
#include "llvm/CodeGen/Passes.h"
#include "llvm/Target/TargetRegisterInfo.h"
Alkis Evlogimenos
committed
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
Evan Cheng
committed
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
Lang Hames
committed
#include <limits>
Alkis Evlogimenos
committed
using namespace llvm;
// Hidden options for help debugging.
static cl::opt<bool> DisableReMat("disable-rematerialization",
cl::init(false), cl::Hidden);
static cl::opt<bool> EnableFastSpilling("fast-spill",
cl::init(false), cl::Hidden);
Evan Cheng
committed
STATISTIC(numIntervals , "Number of original intervals");
STATISTIC(numFolds , "Number of loads/stores folded into instructions");
STATISTIC(numSplits , "Number of intervals split");
static RegisterPass<LiveIntervals> X("liveintervals", "Live Interval Analysis");
Alkis Evlogimenos
committed
Chris Lattner
committed
void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
Dan Gohman
committed
AU.addRequired<AliasAnalysis>();
AU.addPreserved<AliasAnalysis>();
AU.addPreserved<LiveVariables>();
AU.addPreservedID(MachineLoopInfoID);
AU.addPreservedID(MachineDominatorsID);
if (!StrongPHIElim) {
AU.addPreservedID(PHIEliminationID);
AU.addRequiredID(PHIEliminationID);
}
AU.addRequiredID(TwoAddressInstructionPassID);
AU.addPreserved<ProcessImplicitDefs>();
AU.addRequired<ProcessImplicitDefs>();
AU.addPreserved<SlotIndexes>();
AU.addRequiredTransitive<SlotIndexes>();
MachineFunctionPass::getAnalysisUsage(AU);
Alkis Evlogimenos
committed
}
Chris Lattner
committed
void LiveIntervals::releaseMemory() {
Owen Anderson
committed
// Free the live intervals themselves.
for (DenseMap<unsigned, LiveInterval*>::iterator I = r2iMap_.begin(),
Owen Anderson
committed
E = r2iMap_.end(); I != E; ++I)
delete I->second;
// Release VNInfo memroy regions after all VNInfo objects are dtor'd.
VNInfoAllocator.Reset();
Evan Cheng
committed
while (!CloneMIs.empty()) {
MachineInstr *MI = CloneMIs.back();
CloneMIs.pop_back();
mf_->DeleteMachineInstr(MI);
}
}
Owen Anderson
committed
/// runOnMachineFunction - Register allocate the whole function
///
bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
mf_ = &fn;
mri_ = &mf_->getRegInfo();
tm_ = &fn.getTarget();
tri_ = tm_->getRegisterInfo();
tii_ = tm_->getInstrInfo();
Dan Gohman
committed
aa_ = &getAnalysis<AliasAnalysis>();
Owen Anderson
committed
lv_ = &getAnalysis<LiveVariables>();
Owen Anderson
committed
allocatableRegs_ = tri_->getAllocatableSet(fn);
Alkis Evlogimenos
committed
Alkis Evlogimenos
committed
Alkis Evlogimenos
committed
}
void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
OS << "********** INTERVALS **********\n";
for (const_iterator I = begin(), E = end(); I != E; ++I) {
I->second->print(OS, tri_);
OS << "\n";
Evan Cheng
committed
printInstrs(OS);
}
void LiveIntervals::printInstrs(raw_ostream &OS) const {
OS << "********** MACHINEINSTRS **********\n";
for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
mbbi != mbbe; ++mbbi) {
OS << "BB#" << mbbi->getNumber()
<< ":\t\t# derived from " << mbbi->getName() << "\n";
for (MachineBasicBlock::iterator mii = mbbi->begin(),
mie = mbbi->end(); mii != mie; ++mii) {
OS << getInstructionIndex(mii) << '\t' << *mii;
Evan Cheng
committed
void LiveIntervals::dumpInstrs() const {
Evan Cheng
committed
}
Jakob Stoklund Olesen
committed
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
bool LiveIntervals::conflictsWithPhysReg(const LiveInterval &li,
VirtRegMap &vrm, unsigned reg) {
// We don't handle fancy stuff crossing basic block boundaries
if (li.ranges.size() != 1)
return true;
const LiveRange &range = li.ranges.front();
SlotIndex idx = range.start.getBaseIndex();
SlotIndex end = range.end.getPrevSlot().getBaseIndex().getNextIndex();
// Skip deleted instructions
MachineInstr *firstMI = getInstructionFromIndex(idx);
while (!firstMI && idx != end) {
idx = idx.getNextIndex();
firstMI = getInstructionFromIndex(idx);
}
if (!firstMI)
return false;
// Find last instruction in range
SlotIndex lastIdx = end.getPrevIndex();
MachineInstr *lastMI = getInstructionFromIndex(lastIdx);
while (!lastMI && lastIdx != idx) {
lastIdx = lastIdx.getPrevIndex();
lastMI = getInstructionFromIndex(lastIdx);
}
if (!lastMI)
return false;
// Range cannot cross basic block boundaries or terminators
MachineBasicBlock *MBB = firstMI->getParent();
if (MBB != lastMI->getParent() || lastMI->getDesc().isTerminator())
return true;
MachineBasicBlock::const_iterator E = lastMI;
++E;
for (MachineBasicBlock::const_iterator I = firstMI; I != E; ++I) {
const MachineInstr &MI = *I;
// Allow copies to and from li.reg
unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
if (tii_->isMoveInstr(MI, SrcReg, DstReg, SrcSubReg, DstSubReg))
if (SrcReg == li.reg || DstReg == li.reg)
continue;
// Check for operands using reg
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
const MachineOperand& mop = MI.getOperand(i);
if (!mop.isReg())
continue;
unsigned PhysReg = mop.getReg();
if (PhysReg == 0 || PhysReg == li.reg)
continue;
if (TargetRegisterInfo::isVirtualRegister(PhysReg)) {
if (!vrm.hasPhys(PhysReg))
continue;
Jakob Stoklund Olesen
committed
PhysReg = vrm.getPhys(PhysReg);
}
Jakob Stoklund Olesen
committed
if (PhysReg && tri_->regsOverlap(PhysReg, reg))
return true;
}
}
Jakob Stoklund Olesen
committed
// No conflicts found.
return false;
}
Evan Cheng
committed
/// conflictsWithPhysRegRef - Similar to conflictsWithPhysRegRef except
/// it can check use as well.
bool LiveIntervals::conflictsWithPhysRegRef(LiveInterval &li,
unsigned Reg, bool CheckUse,
SmallPtrSet<MachineInstr*,32> &JoinedCopies) {
for (LiveInterval::Ranges::const_iterator
I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
for (SlotIndex index = I->start.getBaseIndex(),
end = I->end.getPrevSlot().getBaseIndex().getNextIndex();
index != end;
index = index.getNextIndex()) {
MachineInstr *MI = getInstructionFromIndex(index);
if (!MI)
continue; // skip deleted instructions
Evan Cheng
committed
if (JoinedCopies.count(MI))
continue;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand& MO = MI->getOperand(i);
if (!MO.isReg())
continue;
if (MO.isUse() && !CheckUse)
continue;
unsigned PhysReg = MO.getReg();
if (PhysReg == 0 || TargetRegisterInfo::isVirtualRegister(PhysReg))
continue;
if (tri_->isSubRegister(Reg, PhysReg))
return true;
}
}
}
return false;
}
Evan Cheng
committed
static void printRegName(unsigned reg, const TargetRegisterInfo* tri_) {
if (TargetRegisterInfo::isPhysicalRegister(reg))
Alkis Evlogimenos
committed
}
Alkis Evlogimenos
committed
void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
Alkis Evlogimenos
committed
MachineBasicBlock::iterator mi,
MachineOperand& MO,
Evan Cheng
committed
unsigned MOIdx,
LiveInterval &interval) {
Evan Cheng
committed
printRegName(interval.reg, tri_);
// Virtual registers may be defined multiple times (due to phi
// elimination and 2-addr elimination). Much of what we do only has to be
// done once for the vreg. We use an empty interval to detect the first
Evan Cheng
committed
LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
if (interval.empty()) {
// Get the Idx of the defining instructions.
// Earlyclobbers move back one, so that they overlap the live range
// of inputs.
if (MO.isEarlyClobber())
VNInfo *ValNo;
Evan Cheng
committed
MachineInstr *CopyMI = NULL;
Evan Cheng
committed
unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
Evan Cheng
committed
if (mi->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG ||
Evan Cheng
committed
mi->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
mi->getOpcode() == TargetInstrInfo::SUBREG_TO_REG ||
Evan Cheng
committed
tii_->isMoveInstr(*mi, SrcReg, DstReg, SrcSubReg, DstSubReg))
Evan Cheng
committed
CopyMI = mi;
Evan Cheng
committed
// Earlyclobbers move back one.
ValNo = interval.getNextValue(defIndex, CopyMI, true, VNInfoAllocator);
assert(ValNo->id == 0 && "First value in interval is not 0?");
// Loop over all of the blocks that the vreg is defined in. There are
// two cases we have to handle here. The most common case is a vreg
// whose lifetime is contained within a basic block. In this case there
// will be a single kill, in MBB, which comes after the definition.
if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
// FIXME: what about dead vars?
killIdx = getInstructionIndex(vi.Kills[0]).getDefIndex();
// If the kill happens after the definition, we have an intra-block
// live range.
if (killIdx > defIndex) {
Jeffrey Yasskin
committed
assert(vi.AliveBlocks.empty() &&
"Shouldn't be alive across any blocks!");
LiveRange LR(defIndex, killIdx, ValNo);
ValNo->addKill(killIdx);
// The other case we handle is when a virtual register lives to the end
// of the defining block, potentially live across some blocks, then is
// live into some number of blocks, but gets killed. Start by adding a
// range that goes from this definition to the end of the defining block.
LiveRange NewLR(defIndex, getMBBEndIdx(mbb), ValNo);
interval.addRange(NewLR);
// Iterate over all of the blocks that the variable is completely
// live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
// live interval.
Jeffrey Yasskin
committed
for (SparseBitVector<>::iterator I = vi.AliveBlocks.begin(),
E = vi.AliveBlocks.end(); I != E; ++I) {
MachineBasicBlock *aliveBlock = mf_->getBlockNumbered(*I);
LiveRange LR(getMBBStartIdx(aliveBlock), getMBBEndIdx(aliveBlock), ValNo);
interval.addRange(LR);
}
// Finally, this virtual register is live from the start of any killing
// block to the 'use' slot of the killing instruction.
for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
MachineInstr *Kill = vi.Kills[i];
SlotIndex killIdx =
getInstructionIndex(Kill).getDefIndex();
LiveRange LR(getMBBStartIdx(Kill->getParent()), killIdx, ValNo);
ValNo->addKill(killIdx);
}
} else {
// If this is the second time we see a virtual register definition, it
// must be due to phi elimination or two addr elimination. If this is
// the result of two address elimination, then the vreg is one of the
// def-and-use register operand.
if (mi->isRegTiedToUseOperand(MOIdx)) {
// If this is a two-address definition, then we have already processed
// the live range. The only problem is that we didn't realize there
// are actually two values in the live interval. Because of this we
// need to take the LiveRegion that defines this register and split it
// into two values.
SlotIndex DefIndex = interval.getValNumInfo(0)->def.getDefIndex();
SlotIndex RedefIndex = MIIdx.getDefIndex();
if (MO.isEarlyClobber())
const LiveRange *OldLR =
interval.getLiveRangeContaining(RedefIndex.getUseIndex());
VNInfo *OldValNo = OldLR->valno;
// Delete the initial value, which should be short and continuous,
// because the 2-addr copy must be in the same MBB as the redef.
interval.removeRange(DefIndex, RedefIndex);
// Two-address vregs should always only be redefined once. This means
// that at this point, there should be exactly one value number in it.
assert(interval.containsOneValue() && "Unexpected 2-addr liveint!");
Chris Lattner
committed
// The new value number (#1) is defined by the instruction we claimed
// defined value #0.
Lang Hames
committed
VNInfo *ValNo = interval.getNextValue(OldValNo->def, OldValNo->getCopy(),
Evan Cheng
committed
VNInfoAllocator);
ValNo->setFlags(OldValNo->getFlags()); // * <- updating here
Chris Lattner
committed
// Value#0 is now defined by the 2-addr instruction.
Evan Cheng
committed
OldValNo->def = RedefIndex;
Lang Hames
committed
OldValNo->setCopy(0);
// Add the new live interval which replaces the range for the input copy.
LiveRange LR(DefIndex, RedefIndex, ValNo);
ValNo->addKill(RedefIndex);
// If this redefinition is dead, we need to add a dummy unit live
// range covering the def slot.
Owen Anderson
committed
if (MO.isDead())
interval.addRange(LiveRange(RedefIndex, RedefIndex.getStoreIndex(),
OldValNo));
} else {
// Otherwise, this must be because of phi elimination. If this is the
// first redefinition of the vreg that we have seen, go back and change
// the live range in the PHI block to be a different value number.
if (interval.containsOneValue()) {
VNInfo *VNI = interval.getValNumInfo(0);
// Phi elimination may have reused the register for multiple identical
// phi nodes. There will be a kill per phi. Remove the old ranges that
// we now know have an incorrect number.
for (unsigned ki=0, ke=vi.Kills.size(); ki != ke; ++ki) {
MachineInstr *Killer = vi.Kills[ki];
SlotIndex Start = getMBBStartIdx(Killer->getParent());
SlotIndex End = getInstructionIndex(Killer).getDefIndex();
DEBUG({
dbgs() << "\n\t\trenaming [" << Start << "," << End << "] in: ";
interval.print(dbgs(), tri_);
});
interval.removeRange(Start, End);
// Replace the interval with one of a NEW value number. Note that
// this value number isn't actually defined by an instruction, weird
// huh? :)
LiveRange LR(Start, End,
interval.getNextValue(SlotIndex(Start, true),
0, false, VNInfoAllocator));
LR.valno->setIsPHIDef(true);
interval.addRange(LR);
LR.valno->addKill(End);
}
MachineBasicBlock *killMBB = getMBBFromIndex(VNI->def);
}
// In the case of PHI elimination, each variable definition is only
// live until the end of the block. We've already taken care of the
// rest of the live range.
if (MO.isEarlyClobber())
Evan Cheng
committed
VNInfo *ValNo;
Evan Cheng
committed
MachineInstr *CopyMI = NULL;
Evan Cheng
committed
unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
Evan Cheng
committed
if (mi->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG ||
Evan Cheng
committed
mi->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
mi->getOpcode() == TargetInstrInfo::SUBREG_TO_REG ||
Evan Cheng
committed
tii_->isMoveInstr(*mi, SrcReg, DstReg, SrcSubReg, DstSubReg))
Evan Cheng
committed
CopyMI = mi;
ValNo = interval.getNextValue(defIndex, CopyMI, true, VNInfoAllocator);
Chris Lattner
committed
SlotIndex killIndex = getMBBEndIdx(mbb);
LiveRange LR(defIndex, killIndex, ValNo);
Alkis Evlogimenos
committed
Alkis Evlogimenos
committed
}
void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
Alkis Evlogimenos
committed
MachineBasicBlock::iterator mi,
Owen Anderson
committed
MachineOperand& MO,
Chris Lattner
committed
LiveInterval &interval,
Evan Cheng
committed
MachineInstr *CopyMI) {
// A physical register cannot be live across basic block, so its
// lifetime must end somewhere in its defining basic block.
Evan Cheng
committed
printRegName(interval.reg, tri_);
SlotIndex baseIndex = MIIdx;
SlotIndex start = baseIndex.getDefIndex();
// Earlyclobbers move back one.
if (MO.isEarlyClobber())
// If it is not used after definition, it is considered dead at
// the instruction defining it. Hence its interval is:
// [defSlot(def), defSlot(def)+1)
// For earlyclobbers, the defSlot was pushed back one; the extra
// advance below compensates.
Owen Anderson
committed
if (MO.isDead()) {
goto exit;
Alkis Evlogimenos
committed
// If it is not dead on definition, it must be killed by a
// subsequent instruction. Hence its interval is:
// [defSlot(def), useSlot(kill)+1)
while (++mi != MBB->end()) {
if (getInstructionFromIndex(baseIndex) == 0)
baseIndex = indexes_->getNextNonNullIndex(baseIndex);
if (mi->killsRegister(interval.reg, tri_)) {
goto exit;
Evan Cheng
committed
} else {
int DefIdx = mi->findRegisterDefOperandIdx(interval.reg, false, tri_);
if (DefIdx != -1) {
if (mi->isRegTiedToUseOperand(DefIdx)) {
// Two-address instruction.
Evan Cheng
committed
} else {
// Another instruction redefines the register before it is ever read.
// Then the register is essentially dead at the instruction that defines
// it. Hence its interval is:
// [defSlot(def), defSlot(def)+1)
Evan Cheng
committed
}
goto exit;
}
Owen Anderson
committed
// The only case we should have a dead physreg here without a killing or
// instruction where we know it's dead is if it is live-in to the function
Evan Cheng
committed
// and never used. Another possible case is the implicit use of the
// physical register has been deleted by two-address pass.
Alkis Evlogimenos
committed
exit:
assert(start < end && "did not find end of interval?");
// Already exists? Extend old live interval.
LiveInterval::iterator OldLR = interval.FindLiveRangeContaining(start);
Evan Cheng
committed
bool Extend = OldLR != interval.end();
VNInfo *ValNo = Extend
? OldLR->valno : interval.getNextValue(start, CopyMI, true, VNInfoAllocator);
Evan Cheng
committed
if (MO.isEarlyClobber() && Extend)
LiveRange LR(start, end, ValNo);
LR.valno->addKill(end);
Alkis Evlogimenos
committed
}
void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
MachineBasicBlock::iterator MI,
Evan Cheng
committed
MachineOperand& MO,
unsigned MOIdx) {
Owen Anderson
committed
if (TargetRegisterInfo::isVirtualRegister(MO.getReg()))
Evan Cheng
committed
handleVirtualRegisterDef(MBB, MI, MIIdx, MO, MOIdx,
Owen Anderson
committed
getOrCreateInterval(MO.getReg()));
else if (allocatableRegs_[MO.getReg()]) {
Evan Cheng
committed
MachineInstr *CopyMI = NULL;
Evan Cheng
committed
unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
Evan Cheng
committed
if (MI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG ||
Evan Cheng
committed
MI->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
MI->getOpcode() == TargetInstrInfo::SUBREG_TO_REG ||
Evan Cheng
committed
tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubReg, DstSubReg))
Evan Cheng
committed
CopyMI = MI;
Evan Cheng
committed
handlePhysicalRegisterDef(MBB, MI, MIIdx, MO,
Owen Anderson
committed
getOrCreateInterval(MO.getReg()), CopyMI);
Owen Anderson
committed
for (const unsigned* AS = tri_->getSubRegisters(MO.getReg()); *AS; ++AS)
// If MI also modifies the sub-register explicitly, avoid processing it
// more than once. Do not pass in TRI here so it checks for exact match.
if (!MI->modifiesRegister(*AS))
Evan Cheng
committed
handlePhysicalRegisterDef(MBB, MI, MIIdx, MO,
Owen Anderson
committed
getOrCreateInterval(*AS), 0);
Alkis Evlogimenos
committed
}
void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
Evan Cheng
committed
printRegName(interval.reg, tri_);
// Look for kills, if it reaches a def before it's killed, then it shouldn't
// be considered a livein.
MachineBasicBlock::iterator mi = MBB->begin();
SlotIndex baseIndex = MIIdx;
SlotIndex start = baseIndex;
if (getInstructionFromIndex(baseIndex) == 0)
baseIndex = indexes_->getNextNonNullIndex(baseIndex);
SlotIndex end = baseIndex;
bool SeenDefUse = false;
Owen Anderson
committed
while (mi != MBB->end()) {
if (mi->killsRegister(interval.reg, tri_)) {
SeenDefUse = true;
} else if (mi->modifiesRegister(interval.reg, tri_)) {
// Another instruction redefines the register before it is ever read.
// Then the register is essentially dead at the instruction that defines
// it. Hence its interval is:
// [defSlot(def), defSlot(def)+1)
SeenDefUse = true;
}
++mi;
if (mi != MBB->end()) {
}
// Live-in register might not be used at all.
if (!SeenDefUse) {
end = baseIndex;
}
VNInfo *vni =
interval.getNextValue(SlotIndex(getMBBStartIdx(MBB), true),
0, false, VNInfoAllocator);
vni->setIsPHIDef(true);
LiveRange LR(start, end, vni);
LR.valno->addKill(end);
Alkis Evlogimenos
committed
/// computeIntervals - computes the live intervals for virtual
Alkis Evlogimenos
committed
/// registers. for some ordering of the machine instructions [1,N] a
/// live interval is an interval [i, j) where 1 <= i <= j < N for
Alkis Evlogimenos
committed
/// which a variable is live
void LiveIntervals::computeIntervals() {
<< "********** Function: "
<< ((Value*)mf_->getFunction())->getName() << '\n');
Evan Cheng
committed
SmallVector<unsigned, 8> UndefUses;
for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end();
MBBI != E; ++MBBI) {
MachineBasicBlock *MBB = MBBI;
Owen Anderson
committed
// Track the index of the current machine instr.
MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
Evan Cheng
committed
// Create intervals for live-ins to this BB first.
for (MachineBasicBlock::const_livein_iterator LI = MBB->livein_begin(),
LE = MBB->livein_end(); LI != LE; ++LI) {
handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*LI));
// Multiple live-ins can alias the same register.
for (const unsigned* AS = tri_->getSubRegisters(*LI); *AS; ++AS)
if (!hasInterval(*AS))
handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*AS),
true);
Owen Anderson
committed
// Skip over empty initial indices.
if (getInstructionFromIndex(MIIndex) == 0)
MIIndex = indexes_->getNextNonNullIndex(MIIndex);
Owen Anderson
committed
for (; MI != miEnd; ++MI) {
for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
MachineOperand &MO = MI->getOperand(i);
Evan Cheng
committed
if (!MO.isReg() || !MO.getReg())
continue;
// handle register defs - build intervals
Evan Cheng
committed
if (MO.isDef())
Evan Cheng
committed
handleRegisterDef(MBB, MI, MIIndex, MO, i);
Evan Cheng
committed
else if (MO.isUndef())
UndefUses.push_back(MO.getReg());
Owen Anderson
committed
// Move to the next instr slot.
MIIndex = indexes_->getNextNonNullIndex(MIIndex);
Alkis Evlogimenos
committed
}
Evan Cheng
committed
// Create empty intervals for registers defined by implicit_def's (except
// for those implicit_def that define values which are liveout of their
// blocks.
for (unsigned i = 0, e = UndefUses.size(); i != e; ++i) {
unsigned UndefReg = UndefUses[i];
(void)getOrCreateInterval(UndefReg);
}
Alkis Evlogimenos
committed
}
Alkis Evlogimenos
committed
Owen Anderson
committed
LiveInterval* LiveIntervals::createInterval(unsigned reg) {
float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? HUGE_VALF : 0.0F;
Owen Anderson
committed
return new LiveInterval(reg, Weight);
/// dupInterval - Duplicate a live interval. The caller is responsible for
/// managing the allocated memory.
LiveInterval* LiveIntervals::dupInterval(LiveInterval *li) {
LiveInterval *NewLI = createInterval(li->reg);
NewLI->Copy(*li, mri_, getVNInfoAllocator());
return NewLI;
}
Evan Cheng
committed
/// getVNInfoSourceReg - Helper function that parses the specified VNInfo
/// copy field and returns the source register that defines it.
unsigned LiveIntervals::getVNInfoSourceReg(const VNInfo *VNI) const {
Lang Hames
committed
if (!VNI->getCopy())
Evan Cheng
committed
return 0;
Lang Hames
committed
if (VNI->getCopy()->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) {
Evan Cheng
committed
// If it's extracting out of a physical register, return the sub-register.
Lang Hames
committed
unsigned Reg = VNI->getCopy()->getOperand(1).getReg();
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
unsigned SrcSubReg = VNI->getCopy()->getOperand(2).getImm();
unsigned DstSubReg = VNI->getCopy()->getOperand(0).getSubReg();
if (SrcSubReg == DstSubReg)
// %reg1034:3<def> = EXTRACT_SUBREG %EDX, 3
// reg1034 can still be coalesced to EDX.
return Reg;
assert(DstSubReg == 0);
Lang Hames
committed
Reg = tri_->getSubReg(Reg, VNI->getCopy()->getOperand(2).getImm());
Evan Cheng
committed
return Reg;
Lang Hames
committed
} else if (VNI->getCopy()->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
VNI->getCopy()->getOpcode() == TargetInstrInfo::SUBREG_TO_REG)
return VNI->getCopy()->getOperand(2).getReg();
Evan Cheng
committed
Evan Cheng
committed
unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
Lang Hames
committed
if (tii_->isMoveInstr(*VNI->getCopy(), SrcReg, DstReg, SrcSubReg, DstSubReg))
Evan Cheng
committed
return SrcReg;
llvm_unreachable("Unrecognized copy instruction!");
Evan Cheng
committed
return 0;
}
//===----------------------------------------------------------------------===//
// Register allocator hooks.
//
Evan Cheng
committed
/// getReMatImplicitUse - If the remat definition MI has one (for now, we only
/// allow one) virtual register operand, then its uses are implicitly using
/// the register. Returns the virtual register.
unsigned LiveIntervals::getReMatImplicitUse(const LiveInterval &li,
MachineInstr *MI) const {
unsigned RegOp = 0;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || !MO.isUse())
Evan Cheng
committed
continue;
unsigned Reg = MO.getReg();
if (Reg == 0 || Reg == li.reg)
continue;
if (TargetRegisterInfo::isPhysicalRegister(Reg) &&
!allocatableRegs_[Reg])
continue;
Evan Cheng
committed
// FIXME: For now, only remat MI with at most one register operand.
assert(!RegOp &&
"Can't rematerialize instruction with multiple register operand!");
RegOp = MO.getReg();
Dan Gohman
committed
#ifndef NDEBUG
Evan Cheng
committed
break;
Dan Gohman
committed
#endif
Evan Cheng
committed
}
return RegOp;
}
/// isValNoAvailableAt - Return true if the val# of the specified interval
/// which reaches the given instruction also reaches the specified use index.
bool LiveIntervals::isValNoAvailableAt(const LiveInterval &li, MachineInstr *MI,
SlotIndex UseIdx) const {
SlotIndex Index = getInstructionIndex(MI);
Evan Cheng
committed
VNInfo *ValNo = li.FindLiveRangeContaining(Index)->valno;
LiveInterval::const_iterator UI = li.FindLiveRangeContaining(UseIdx);
return UI != li.end() && UI->valno == ValNo;
}
/// isReMaterializable - Returns true if the definition MI of the specified
/// val# of the specified interval is re-materializable.
bool LiveIntervals::isReMaterializable(const LiveInterval &li,
Evan Cheng
committed
const VNInfo *ValNo, MachineInstr *MI,
SmallVectorImpl<LiveInterval*> &SpillIs,
Evan Cheng
committed
bool &isLoad) {
if (!tii_->isTriviallyReMaterializable(MI, aa_))
return false;
// Target-specific code can mark an instruction as being rematerializable
// if it has one virtual reg use, though it had better be something like
// a PIC base register which is likely to be live everywhere.
Dan Gohman
committed
unsigned ImpUse = getReMatImplicitUse(li, MI);
if (ImpUse) {
const LiveInterval &ImpLi = getInterval(ImpUse);
for (MachineRegisterInfo::use_iterator ri = mri_->use_begin(li.reg),
re = mri_->use_end(); ri != re; ++ri) {
MachineInstr *UseMI = &*ri;
Dan Gohman
committed
if (li.FindLiveRangeContaining(UseIdx)->valno != ValNo)
continue;
if (!isValNoAvailableAt(ImpLi, MI, UseIdx))
return false;
}
// If a register operand of the re-materialized instruction is going to
// be spilled next, then it's not legal to re-materialize this instruction.
for (unsigned i = 0, e = SpillIs.size(); i != e; ++i)
if (ImpUse == SpillIs[i]->reg)
return false;
Dan Gohman
committed
}
return true;
Evan Cheng
committed
}
Evan Cheng
committed
/// isReMaterializable - Returns true if the definition MI of the specified
/// val# of the specified interval is re-materializable.
bool LiveIntervals::isReMaterializable(const LiveInterval &li,
const VNInfo *ValNo, MachineInstr *MI) {
SmallVector<LiveInterval*, 4> Dummy1;
bool Dummy2;
return isReMaterializable(li, ValNo, MI, Dummy1, Dummy2);
}
Evan Cheng
committed
/// isReMaterializable - Returns true if every definition of MI of every
/// val# of the specified interval is re-materializable.
bool LiveIntervals::isReMaterializable(const LiveInterval &li,
SmallVectorImpl<LiveInterval*> &SpillIs,
bool &isLoad) {
Evan Cheng
committed
isLoad = false;
for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end();
i != e; ++i) {
const VNInfo *VNI = *i;
Evan Cheng
committed
continue; // Dead val#.
// Is the def for the val# rematerializable?
Evan Cheng
committed
return false;
MachineInstr *ReMatDefMI = getInstructionFromIndex(VNI->def);
Evan Cheng
committed
bool DefIsLoad = false;
Evan Cheng
committed
if (!ReMatDefMI ||
!isReMaterializable(li, VNI, ReMatDefMI, SpillIs, DefIsLoad))
Evan Cheng
committed
isLoad |= DefIsLoad;
/// FilterFoldedOps - Filter out two-address use operands. Return
/// true if it finds any issue with the operands that ought to prevent
/// folding.
static bool FilterFoldedOps(MachineInstr *MI,
SmallVector<unsigned, 2> &Ops,
unsigned &MRInfo,
SmallVector<unsigned, 2> &FoldOps) {
MRInfo = 0;
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
unsigned OpIdx = Ops[i];
Evan Cheng
committed
MachineOperand &MO = MI->getOperand(OpIdx);
// FIXME: fold subreg use.
Evan Cheng
committed
if (MO.getSubReg())
return true;
Evan Cheng
committed
if (MO.isDef())
MRInfo |= (unsigned)VirtRegMap::isMod;
else {
// Filter out two-address use operand(s).
if (MI->isRegTiedToDefOperand(OpIdx)) {
MRInfo = VirtRegMap::isModRef;
continue;
}
MRInfo |= (unsigned)VirtRegMap::isRef;
}
FoldOps.push_back(OpIdx);
Evan Cheng
committed
}
return false;
}
/// tryFoldMemoryOperand - Attempts to fold either a spill / restore from
/// slot / to reg or any rematerialized load into ith operand of specified
/// MI. If it is successul, MI is updated with the newly created MI and
/// returns true.
bool LiveIntervals::tryFoldMemoryOperand(MachineInstr* &MI,
VirtRegMap &vrm, MachineInstr *DefMI,
SmallVector<unsigned, 2> &Ops,
bool isSS, int Slot, unsigned Reg) {
// If it is an implicit def instruction, just delete it.
if (MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) {
RemoveMachineInstrFromMaps(MI);
vrm.RemoveMachineInstrFromMaps(MI);
MI->eraseFromParent();
++numFolds;
return true;
}
// Filter the list of operand indexes that are to be folded. Abort if
// any operand will prevent folding.
unsigned MRInfo = 0;
SmallVector<unsigned, 2> FoldOps;
if (FilterFoldedOps(MI, Ops, MRInfo, FoldOps))
return false;
Evan Cheng
committed
Evan Cheng
committed
// The only time it's safe to fold into a two address instruction is when
// it's folding reload and spill from / into a spill stack slot.
if (DefMI && (MRInfo & VirtRegMap::isMod))
Evan Cheng
committed
return false;
MachineInstr *fmi = isSS ? tii_->foldMemoryOperand(*mf_, MI, FoldOps, Slot)
: tii_->foldMemoryOperand(*mf_, MI, FoldOps, DefMI);
// Remember this instruction uses the spill slot.
if (isSS) vrm.addSpillSlotUse(Slot, fmi);
// Attempt to fold the memory reference into the instruction. If
// we can do this, we don't need to insert spill code.
MachineBasicBlock &MBB = *MI->getParent();
if (isSS && !mf_->getFrameInfo()->isImmutableObjectIndex(Slot))
vrm.virtFolded(Reg, MI, fmi, (VirtRegMap::ModRef)MRInfo);
vrm.transferRestorePts(MI, fmi);
vrm.transferEmergencySpills(MI, fmi);
++numFolds;
Evan Cheng
committed
/// canFoldMemoryOperand - Returns true if the specified load / store
/// folding is possible.
bool LiveIntervals::canFoldMemoryOperand(MachineInstr *MI,
SmallVector<unsigned, 2> &Ops,
// Filter the list of operand indexes that are to be folded. Abort if
// any operand will prevent folding.
unsigned MRInfo = 0;
Evan Cheng
committed
SmallVector<unsigned, 2> FoldOps;
if (FilterFoldedOps(MI, Ops, MRInfo, FoldOps))
return false;
Evan Cheng
committed
// It's only legal to remat for a use, not a def.
if (ReMat && (MRInfo & VirtRegMap::isMod))
return false;
Evan Cheng
committed
Evan Cheng
committed
return tii_->canFoldMemoryOperand(MI, FoldOps);
}
bool LiveIntervals::intervalIsInOneMBB(const LiveInterval &li) const {
LiveInterval::Ranges::const_iterator itr = li.ranges.begin();
MachineBasicBlock *mbb = indexes_->getMBBCoveringRange(itr->start, itr->end);
if (mbb == 0)
return false;
for (++itr; itr != li.ranges.end(); ++itr) {
MachineBasicBlock *mbb2 =
indexes_->getMBBCoveringRange(itr->start, itr->end);
if (mbb2 != mbb)
Evan Cheng
committed
/// rewriteImplicitOps - Rewrite implicit use operands of MI (i.e. uses of
/// interval on to-be re-materialized operands of MI) with new register.
void LiveIntervals::rewriteImplicitOps(const LiveInterval &li,