Newer
Older
//===- DropUnitDims.cpp - Pass to drop use of unit-extent for broadcasting ===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements patterns/pass to remove usage of unit-extent dimensions
// to specify broadcasting in favor of more canonical representation of the
// computation
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
#include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/Transforms/FoldUtils.h"
River Riddle
committed
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "linalg-drop-unit-dims"
using namespace mlir;
using namespace mlir::edsc;
using namespace mlir::edsc::intrinsics;
using namespace mlir::linalg;
/// Implements a pass that canonicalizes the uses of unit-extent dimensions for
/// broadcasting. For example,
///
/// ```mlir
/// #accesses = [
/// affine_map<(d0, d1) -> (0, d1)>,
/// affine_map<(d0, d1) -> (d0, 0)>,
/// affine_map<(d0, d1) -> (d0, d1)>
/// ]
///
/// #trait = {
/// args_in = 2,
/// args_out = 1,
/// indexing_maps = #accesses,
/// iterator_types = ["parallel", "parallel"],
/// library_call = "some_external_fn"
/// }
///
/// func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) ->
/// tensor<5x5xf32>
/// {
/// %0 = linalg.tensor_reshape %arg0 [affine_map<(d0, d1) -> (d0, d1)>] :
/// tensor<5xf32> into tensor<1x5xf32>
/// %1 = linalg.tensor_reshape %arg1 [affine_map<(d0, d1) -> (d0, d1)>] :
/// tensor<5xf32> into tensor<5x1xf32>
/// %2 = linalg.generic #trait %0, %1 {
/// ^bb0(%arg2: f32, %arg3: f32):
/// %3 = addf %arg2, %arg3 : f32
/// linalg.yield %3 : f32
/// } : tensor<1x5xf32>, tensor<5x1xf32> -> tensor<5x5xf32>
/// return %2 : tensor<5x5xf32>
/// }
///
/// would canonicalize to
///
/// ```mlir
/// #accesses = [
/// affine_map<(d0, d1) -> (d1)>,
/// affine_map<(d0, d1) -> (d0)>,
/// affine_map<(d0, d1) -> (d0, d1)>
/// ]
///
/// #trait = {
/// args_in = 2,
/// args_out = 1,
/// indexing_maps = #accesses,
/// iterator_types = ["parallel", "parallel"],
/// library_call = "some_external_fn"
/// }
///
/// func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) ->
/// tensor<5x5xf32>
/// {
/// %0 = linalg.generic #trait %arg0, %arg1 {
/// ^bb0(%arg2: f32, %arg3: f32):
/// %3 = addf %arg2, %arg3 : f32
/// linalg.yield %3 : f32
/// } : tensor<5xf32>, tensor<5xf32> -> tensor<5x5xf32>
/// return %0 : tensor<5x5xf32>
/// }
/// Given dims of the iteration space of a structured op that are known to be
/// single trip count (`unitDims`), return the indexing maps to use in the
/// canonicalized op with these dims removed, given the original `indexingMaps`.
static ArrayAttr replaceUnitDims(DenseSet<unsigned> &unitDims,
ArrayRef<AffineMap> indexingMaps,
MLIRContext *context) {
if (indexingMaps.empty())
return nullptr;
unsigned numIterationDims = indexingMaps.front().getNumDims();
unsigned numSymbols = indexingMaps.front().getNumSymbols();
// Compute the replacement for each dim expr.
SmallVector<AffineExpr, 4> dimReplacements;
dimReplacements.reserve(numIterationDims);
unsigned numKeptDims = 0;
for (unsigned dim : llvm::seq<unsigned>(0, numIterationDims)) {
if (unitDims.count(dim))
dimReplacements.push_back(getAffineConstantExpr(0, context));
else
dimReplacements.push_back(getAffineDimExpr(numKeptDims++, context));
}
// Symbols remain the same.
SmallVector<AffineExpr, 4> symReplacements;
symReplacements.reserve(numSymbols);
for (unsigned symbol : llvm::seq<unsigned>(0, numSymbols))
symReplacements.push_back(getAffineSymbolExpr(symbol, context));
SmallVector<AffineMap, 4> newIndexingMaps;
newIndexingMaps.reserve(indexingMaps.size());
for (AffineMap operandMap : indexingMaps) {
// Expected indexing maps to have no symbols.
if (operandMap.getNumSymbols())
return nullptr;
newIndexingMaps.push_back(simplifyAffineMap(
operandMap.replaceDimsAndSymbols(dimReplacements, symReplacements,
numIterationDims - unitDims.size(),
numSymbols)));
}
// Check that the new index maps are invertible. If not, something went
// wrong, so abort.
if (!inversePermutation(concatAffineMaps(newIndexingMaps)))
return nullptr;
return ArrayAttr::get(context,
llvm::to_vector<4>(llvm::map_range(
newIndexingMaps, [](AffineMap map) -> Attribute {
return AffineMapAttr::get(map);
})));
}
/// Modify the region of indexed generic op to drop arguments corresponding to
/// loops that are unit trip count.
template <typename OpTy>
static LogicalResult
replaceBlockArgForUnitDimLoops(OpTy op, const DenseSet<unsigned> &unitDims,
PatternRewriter &rewriterp) {
return success();
}
template <>
LogicalResult replaceBlockArgForUnitDimLoops<IndexedGenericOp>(
IndexedGenericOp op, const DenseSet<unsigned> &unitDims,
PatternRewriter &rewriter) {
OpBuilder::InsertionGuard guard(rewriter);
Christian Sigg
committed
Block *entryBlock = &op->getRegion(0).front();
rewriter.setInsertionPointToStart(entryBlock);
Value zero = rewriter.create<ConstantIndexOp>(op.getLoc(), 0);
for (unsigned unitDimLoop : unitDims) {
entryBlock->getArgument(unitDimLoop).replaceAllUsesWith(zero);
}
SmallVector<unsigned, 8> unitDimsToErase(unitDims.begin(), unitDims.end());
entryBlock->eraseArguments(unitDimsToErase);
return success();
}
namespace {
/// Pattern to fold unit-trip count loops in GenericOps.
// TODO: Generalize this to indexed-generic as well by modifying the region args
// as well.
template <typename GenericOpTy>
struct FoldUnitDimLoops : public OpRewritePattern<GenericOpTy> {
using OpRewritePattern<GenericOpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(GenericOpTy op,
PatternRewriter &rewriter) const override {
SmallVector<AffineMap, 4> indexingMaps = op.getIndexingMaps();
if (indexingMaps.empty())
return failure();
// Check if any of the iteration dimensions are unit-trip count. They will
// end up being unit-trip count if they are used to index into a unit-dim
// tensor/memref.
AffineMap invertedMap = inversePermutation(concatAffineMaps(indexingMaps));
if (!invertedMap)
return failure();
SmallVector<int64_t, 4> dims;
for (ShapedType shapedType : op.getShapedOperandTypes())
dims.append(shapedType.getShape().begin(), shapedType.getShape().end());
DenseSet<unsigned> unitDims;
ArrayAttr iteratorTypes = op.iterator_types();
for (auto expr : enumerate(invertedMap.getResults())) {
if (AffineDimExpr dimExpr = expr.value().dyn_cast<AffineDimExpr>())
if (dims[dimExpr.getPosition()] == 1 &&
iteratorTypes[expr.index()].dyn_cast<StringAttr>().getValue() ==
getParallelIteratorTypeName())
unitDims.insert(expr.index());
}
if (unitDims.empty())
return failure();
// Compute the modified indexing maps.
MLIRContext *context = rewriter.getContext();
ArrayAttr newIndexingMapAttr =
replaceUnitDims(unitDims, indexingMaps, context);
if (!newIndexingMapAttr)
return op.emitError("unable to compute modified indexing_maps");
// Compute the iterator types of the modified op by dropping the one-trip
// count loops.
SmallVector<Attribute, 4> newIteratorTypes;
for (auto attr : llvm::enumerate(iteratorTypes)) {
if (!unitDims.count(attr.index()))
newIteratorTypes.push_back(attr.value());
}
rewriter.startRootUpdate(op);
op.indexing_mapsAttr(newIndexingMapAttr);
op.iterator_typesAttr(ArrayAttr::get(context, newIteratorTypes));
(void)replaceBlockArgForUnitDimLoops(op, unitDims, rewriter);
rewriter.finalizeRootUpdate(op);
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
return success();
}
};
struct UnitExtentReplacementInfo {
RankedTensorType type;
AffineMap indexMap;
ArrayAttr reassociation;
};
} // namespace
/// Utility function for replacing operands/results to a linalg generic
/// operation on tensors with unit-extent dimensions. These can be replaced with
/// an operand/result with the unit-extent dimension removed. This is only done
/// if the indexing map used to access that didimensionmension has a
/// AffineConstantExpr of value 0. Given the `type` of an result/operand of a
/// Linalg op, and its `indexMap` the utility function returns:
/// - the new type with dimensions of size 1 removed.
/// - modified index map that can be used to access the replaced result/operand
/// - the reassociation that converts from the original tensor type to the
/// modified tensor type.
static UnitExtentReplacementInfo replaceUnitExtents(AffineMap indexMap,
RankedTensorType type,
MLIRContext *context) {
ArrayRef<int64_t> shape = type.getShape();
ArrayRef<AffineExpr> exprs = indexMap.getResults();
SmallVector<AffineExpr, 2> reassociations;
SmallVector<Attribute, 4> reassociationMaps;
SmallVector<AffineExpr, 4> newIndexExprs;
SmallVector<int64_t, 4> newShape;
int64_t origRank = type.getRank();
AffineExpr zeroExpr = getAffineConstantExpr(0, context);
auto isUnitExtent = [&](int64_t dim) -> bool {
return shape[dim] == 1 && exprs[dim] == zeroExpr;
};
unsigned dim = 0;
// Fold dimensions that are unit-extent at the beginning of the tensor.
while (dim < origRank && isUnitExtent(dim))
reassociations.push_back(getAffineDimExpr(dim++, context));
while (dim < origRank) {
reassociations.push_back(getAffineDimExpr(dim, context));
newIndexExprs.push_back(exprs[dim]);
newShape.push_back(shape[dim]);
// Fold all following dimensions that are unit-extent.
while (dim + 1 < origRank && isUnitExtent(dim + 1)) {
++dim;
reassociations.push_back(getAffineDimExpr(dim, context));
}
reassociationMaps.push_back(AffineMapAttr::get(AffineMap::get(
origRank, /*numSymbols = */ 0, reassociations, context)));
reassociations.clear();
++dim;
}
UnitExtentReplacementInfo info = {
RankedTensorType::get(newShape, type.getElementType()),
AffineMap::get(indexMap.getNumDims(), indexMap.getNumSymbols(),
newIndexExprs, context),
ArrayAttr::get(context, reassociationMaps)};
return info;
}
namespace {
/// Pattern to replace tensors operands/results that are unit extents.
template <typename GenericOpTy>
struct ReplaceUnitExtentTensors : public OpRewritePattern<GenericOpTy> {
using OpRewritePattern<GenericOpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(GenericOpTy op,
PatternRewriter &rewriter) const override {
// TODO: support init_tensors and reductions.
if (!op.hasTensorSemantics() || op.getNumInitTensors() != 0)
return failure();
MLIRContext *context = rewriter.getContext();
Location loc = op.getLoc();
SmallVector<AffineMap, 4> newIndexingMaps;
SmallVector<ArrayAttr, 4> reassociationMaps;
SmallVector<ShapedType, 4> newInputOutputTypes;
bool doCanonicalization = false;
for (auto it :
llvm::zip(op.getIndexingMaps(), op.getShapedOperandTypes())) {
auto replacementInfo = replaceUnitExtents(
std::get<0>(it), std::get<1>(it).template cast<RankedTensorType>(),
context);
reassociationMaps.push_back(replacementInfo.reassociation);
newIndexingMaps.push_back(replacementInfo.indexMap);
newInputOutputTypes.push_back(replacementInfo.type);
doCanonicalization |= replacementInfo.type != std::get<1>(it);
}
// If the indexing maps of the result operation are not invertible (i.e. not
// legal), abort.
if (!doCanonicalization ||
!inversePermutation(concatAffineMaps(newIndexingMaps)))
return failure();
// If any operand type change, insert a reshape to convert from the original
// type to the new type.
// TODO: get rid of flattenedIdx which assumes operand order and contiguity.
unsigned flattenedIdx = 0;
auto insertReshapes = [&](ValueRange values) {
SmallVector<Value, 4> res;
res.reserve(values.size());
for (auto operand : llvm::enumerate(values)) {
if (operand.value().getType() == newInputOutputTypes[flattenedIdx])
res.push_back(operand.value());
else
res.push_back(rewriter.create<linalg::TensorReshapeOp>(
loc, newInputOutputTypes[flattenedIdx], operand.value(),
reassociationMaps[flattenedIdx]));
++flattenedIdx;
return res;
};
SmallVector<Value, 4> newInputs = insertReshapes(op.inputs());
SmallVector<Value, 4> newOutputs = insertReshapes(op.outputs());
// If any result type changes, insert a reshape to convert from the original
// type to the new type.
SmallVector<Type, 4> resultTypes;
resultTypes.reserve(op.getNumResults());
for (unsigned i : llvm::seq<unsigned>(0, op.getNumResults()))
resultTypes.push_back(newInputOutputTypes[i + op.getNumInputs()]);
GenericOpTy replacementOp = rewriter.create<GenericOpTy>(
loc, resultTypes, newInputs, newOutputs, newIndexingMaps,
llvm::to_vector<4>(
op.iterator_types().template getAsValueRange<StringAttr>()));
rewriter.inlineRegionBefore(op.region(), replacementOp.region(),
replacementOp.region().begin());
// If any result tensor has a modified shape, then add reshape to recover
// the original shape.
SmallVector<Value, 4> resultReplacements;
for (auto result : llvm::enumerate(replacementOp.getResults())) {
unsigned index = result.index() + replacementOp.getNumInputs();
RankedTensorType origResultType = op.getResult(result.index())
.getType()
.template cast<RankedTensorType>();
if (origResultType != result.value().getType())
resultReplacements.push_back(rewriter.create<linalg::TensorReshapeOp>(
loc, origResultType, result.value(), reassociationMaps[index]));
resultReplacements.push_back(result.value());
}
rewriter.replaceOp(op, resultReplacements);
return success();
}
};
} // namespace
MaheshRavishankar
committed
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
namespace {
/// Pattern to fold pair of reshape ops where the intermediate has unit-dims for
/// example:
///
/// %0 = linalg.tensor_reshape %arg0
/// [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>]
/// : tensor<2048xf32> into tensor<1x4x1x512xf32>
/// %1 = linalg.tensor_reshape %0
/// [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)>,
/// affine_map<(d0, d1, d2, d3) -> (d3)>]
/// : tensor<1x4x1x512xf32> into tensor<4x512xf32>
///
/// can be replaced with
///
/// %0 = linalg.tensor_reshape %arg0 [affine_map<(d0, d1) -> (d0, d1)>]
/// : tensor<2048xf32> into tensor<4x512xf32>
///
/// Similarly,
///
/// %0 = linalg.tensor_reshape %arg0
/// [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)>,
/// affine_map<(d0, d1, d2, d3) -> (d3)>]
/// : tensor<4x512xf32> into tensor<1x4x1x512xf32>
/// %1 = linalg.tensor_reshape %0
/// [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>]
/// : tensor<1x4x1x512xf32> into tensor<2048xf32>
///
/// can be replaced with
///
/// %0 = linalg.tensor_reshape %arg0 [affine_map<(d0, d1) -> (d0, d1)>]
/// : tensor<4x512xf32> into tensor<2048xf32>
struct FoldReshapeOpWithUnitExtent : OpRewritePattern<TensorReshapeOp> {
using OpRewritePattern<TensorReshapeOp>::OpRewritePattern;
LogicalResult matchAndRewrite(TensorReshapeOp reshapeOp,
PatternRewriter &rewriter) const override {
// Check that the source operand is created from a reshape as well.
TensorReshapeOp parentReshapeOp =
reshapeOp.src().getDefiningOp<TensorReshapeOp>();
if (!parentReshapeOp)
return failure();
RankedTensorType srcType = reshapeOp.getSrcType(),
dstType = reshapeOp.getResultType(),
parentSrcType = parentReshapeOp.getSrcType();
if (!srcType.hasStaticShape() || !dstType.hasStaticShape() ||
!parentSrcType.hasStaticShape() ||
srcType.getRank() < dstType.getRank() ||
parentSrcType.getRank() == dstType.getRank())
return failure();
MaheshRavishankar
committed
// Check if the result tensor_reshape after folding the reshapeOp and
// parentReshapeOp are combined.
// If the final tensor_reshape is folding, the parentReshapeOp is
// introducing unit-dims, and the reshapeOp does an actual reshape.
// If the final tensor_reshape op is expanding, the reshapeOp is
// introducing unit-dims, and the parentReshapeOp does an actual reshape.
MaheshRavishankar
committed
bool isFoldingPattern = parentSrcType.getRank() > dstType.getRank();
ArrayRef<int64_t> expandedShape =
MaheshRavishankar
committed
isFoldingPattern ? parentSrcType.getShape() : dstType.getShape();
ArrayRef<int64_t> foldedShape =
isFoldingPattern ? dstType.getShape() : parentSrcType.getShape();
unsigned expandedDim = 0, foldedDim = 0;
SmallVector<SmallVector<AffineExpr, 4>, 4> reassociationExprs(
foldedShape.size());
while (expandedDim < expandedShape.size() &&
foldedDim < foldedShape.size()) {
int64_t dstSize = foldedShape[foldedDim];
int64_t srcSize = expandedShape[expandedDim];
while (srcSize < dstSize && expandedDim < expandedShape.size()) {
reassociationExprs[foldedDim].push_back(
rewriter.getAffineDimExpr(expandedDim++));
srcSize *= expandedShape[expandedDim];
MaheshRavishankar
committed
}
if (srcSize == dstSize) {
reassociationExprs[foldedDim].push_back(
rewriter.getAffineDimExpr(expandedDim++));
// If the next dim in foldedShape is not 1, treat subsequent dims in
// expandedShape which are 1 to be collapsed.
if (foldedDim == foldedShape.size() - 1 ||
foldedShape[foldedDim + 1] != 1) {
while (expandedDim < expandedShape.size() &&
expandedShape[expandedDim] == 1) {
reassociationExprs[foldedDim].push_back(
rewriter.getAffineDimExpr(expandedDim++));
}
}
} else {
return failure();
MaheshRavishankar
committed
}
foldedDim++;
MaheshRavishankar
committed
}
if (expandedDim != expandedShape.size())
return failure();
MaheshRavishankar
committed
SmallVector<AffineMap, 4> reassociationMaps =
llvm::to_vector<4>(llvm::map_range(
reassociationExprs, [&](ArrayRef<AffineExpr> exprs) -> AffineMap {
return AffineMap::get(expandedShape.size(), 0, exprs,
rewriter.getContext());
}));
MaheshRavishankar
committed
rewriter.replaceOpWithNewOp<TensorReshapeOp>(
reshapeOp, dstType, parentReshapeOp.src(),
rewriter.getAffineMapArrayAttr(reassociationMaps));
return success();
}
};
} // namespace
/// Patterns that are used to canonicalize the use of unit-extent dims for
/// broadcasting.
void mlir::populateLinalgFoldUnitExtentDimsPatterns(
OwningRewritePatternList &patterns) {
auto *context = patterns.getContext();
patterns
.insert<FoldUnitDimLoops<GenericOp>, FoldUnitDimLoops<IndexedGenericOp>,
ReplaceUnitExtentTensors<GenericOp>,
ReplaceUnitExtentTensors<IndexedGenericOp>>(context);
TensorReshapeOp::getCanonicalizationPatterns(patterns, context);
MaheshRavishankar
committed
patterns.insert<FoldReshapeOpWithUnitExtent>(context);
populateFoldUnitDimsReshapeOpsByLinearizationPatterns(patterns);
}
namespace {
/// Pass that removes unit-extent dims within generic ops.
struct LinalgFoldUnitExtentDimsPass
: public LinalgFoldUnitExtentDimsBase<LinalgFoldUnitExtentDimsPass> {
void runOnFunction() override {
FuncOp funcOp = getFunction();
MLIRContext *context = funcOp.getContext();
OwningRewritePatternList patterns(context);
if (foldOneTripLoopsOnly)
patterns.insert<FoldUnitDimLoops<GenericOp>,
FoldUnitDimLoops<IndexedGenericOp>>(context);
populateLinalgFoldUnitExtentDimsPatterns(patterns);
(void)applyPatternsAndFoldGreedily(funcOp.getBody(), std::move(patterns));
}
};
} // namespace
std::unique_ptr<OperationPass<FuncOp>>
mlir::createLinalgFoldUnitExtentDimsPass() {
return std::make_unique<LinalgFoldUnitExtentDimsPass>();
}