Newer
Older
Evan Cheng
committed
/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
int e = N->getValueType(0).getVectorNumElements() / 2;
for (int i = 0; i < e; ++i)
if (!isUndefOrEqual(N->getMaskElt(i), i))
Evan Cheng
committed
return false;
for (int i = 0; i < e; ++i)
if (!isUndefOrEqual(N->getMaskElt(e+i), i))
Evan Cheng
committed
return false;
return true;
}
/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
int NumOperands = SVOp->getValueType(0).getVectorNumElements();
unsigned Shift = (NumOperands == 4) ? 2 : 1;
unsigned Mask = 0;
for (int i = 0; i < NumOperands; ++i) {
int Val = SVOp->getMaskElt(NumOperands-i-1);
if (Val < 0) Val = 0;
if (Val >= NumOperands) Val -= NumOperands;
Mask |= Val;
return Mask;
}
/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
unsigned Mask = 0;
// 8 nodes, but we only care about the last 4.
for (unsigned i = 7; i >= 4; --i) {
int Val = SVOp->getMaskElt(i);
if (Val >= 0)
Mask |= (Val - 4);
if (i != 4)
Mask <<= 2;
}
return Mask;
}
/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
unsigned Mask = 0;
// 8 nodes, but we only care about the first 4.
for (int i = 3; i >= 0; --i) {
int Val = SVOp->getMaskElt(i);
if (Val >= 0)
Mask |= Val;
if (i != 0)
Mask <<= 2;
}
return Mask;
}
/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
EVT VVT = N->getValueType(0);
unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
int Val = 0;
unsigned i, e;
for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
Val = SVOp->getMaskElt(i);
if (Val >= 0)
break;
}
return (Val - i) * EltSize;
}
Evan Cheng
committed
/// isZeroNode - Returns true if Elt is a constant zero or a floating point
/// constant +0.0.
bool X86::isZeroNode(SDValue Elt) {
return ((isa<ConstantSDNode>(Elt) &&
cast<ConstantSDNode>(Elt)->getZExtValue() == 0) ||
(isa<ConstantFPSDNode>(Elt) &&
cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
}
/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
/// their permute mask.
static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
SelectionDAG &DAG) {
Owen Anderson
committed
EVT VT = SVOp->getValueType(0);
unsigned NumElems = VT.getVectorNumElements();
SmallVector<int, 8> MaskVec;
for (unsigned i = 0; i != NumElems; ++i) {
int idx = SVOp->getMaskElt(i);
if (idx < 0)
MaskVec.push_back(idx);
else if (idx < (int)NumElems)
MaskVec.push_back(idx + NumElems);
MaskVec.push_back(idx - NumElems);
return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
SVOp->getOperand(0), &MaskVec[0]);
/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
/// the two vector operands have swapped position.
Owen Anderson
committed
static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
unsigned NumElems = VT.getVectorNumElements();
for (unsigned i = 0; i != NumElems; ++i) {
int idx = Mask[i];
if (idx < 0)
else if (idx < (int)NumElems)
Mask[i] = idx + NumElems;
Mask[i] = idx - NumElems;
/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
/// match movhlps. The lower half elements should come from upper half of
/// V1 (and in order), and the upper half elements should come from the upper
/// half of V2 (and in order).
static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
if (Op->getValueType(0).getVectorNumElements() != 4)
return false;
for (unsigned i = 0, e = 2; i != e; ++i)
if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
return false;
for (unsigned i = 2; i != 4; ++i)
if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
return false;
return true;
}
/// isScalarLoadToVector - Returns true if the node is a scalar load that
Evan Cheng
committed
/// is promoted to a vector. It also returns the LoadSDNode by reference if
/// required.
static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
Evan Cheng
committed
if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
return false;
N = N->getOperand(0).getNode();
if (!ISD::isNON_EXTLoad(N))
return false;
if (LD)
*LD = cast<LoadSDNode>(N);
return true;
/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
/// match movlp{s|d}. The lower half elements should come from lower half of
/// V1 (and in order), and the upper half elements should come from the upper
/// half of V2 (and in order). And since V1 will become the source of the
/// MOVLP, it must be either a vector load or a scalar load to vector.
static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
ShuffleVectorSDNode *Op) {
if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
return false;
// Is V2 is a vector load, don't do this transformation. We will try to use
// load folding shufps op.
if (ISD::isNON_EXTLoad(V2))
return false;
unsigned NumElems = Op->getValueType(0).getVectorNumElements();
if (NumElems != 2 && NumElems != 4)
return false;
for (unsigned i = 0, e = NumElems/2; i != e; ++i)
if (!isUndefOrEqual(Op->getMaskElt(i), i))
return false;
for (unsigned i = NumElems/2; i != NumElems; ++i)
if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
return false;
return true;
/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
/// all the same.
static bool isSplatVector(SDNode *N) {
if (N->getOpcode() != ISD::BUILD_VECTOR)
return false;
for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
if (N->getOperand(i) != SplatValue)
return false;
return true;
}
/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
static bool isZeroShuffle(ShuffleVectorSDNode *N) {
SDValue V1 = N->getOperand(0);
SDValue V2 = N->getOperand(1);
unsigned NumElems = N->getValueType(0).getVectorNumElements();
for (unsigned i = 0; i != NumElems; ++i) {
int Idx = N->getMaskElt(i);
if (Idx >= (int)NumElems) {
unsigned Opc = V2.getOpcode();
if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
Evan Cheng
committed
if (Opc != ISD::BUILD_VECTOR ||
!X86::isZeroNode(V2.getOperand(Idx-NumElems)))
return false;
} else if (Idx >= 0) {
unsigned Opc = V1.getOpcode();
if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
Evan Cheng
committed
if (Opc != ISD::BUILD_VECTOR ||
!X86::isZeroNode(V1.getOperand(Idx)))
return false;
}
}
return true;
}
/// getZeroVector - Returns a vector of specified type with all zero elements.
///
Owen Anderson
committed
static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
assert(VT.isVector() && "Expected a vector type");
// Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
// type. This ensures they get CSE'd.
if (VT.getSizeInBits() == 64) { // MMX
Owen Anderson
committed
SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
Evan Cheng
committed
} else if (HasSSE2) { // SSE2
Owen Anderson
committed
SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
Evan Cheng
committed
} else { // SSE1
Owen Anderson
committed
SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
Evan Cheng
committed
}
return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
}
/// getOnesVector - Returns a vector of specified type with all bits set.
///
Owen Anderson
committed
static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
assert(VT.isVector() && "Expected a vector type");
// Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
// type. This ensures they get CSE'd.
Owen Anderson
committed
SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
if (VT.getSizeInBits() == 64) // MMX
Owen Anderson
committed
Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
else // SSE
Owen Anderson
committed
Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
}
/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
/// that point to V2 points to its first element.
static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
Owen Anderson
committed
EVT VT = SVOp->getValueType(0);
unsigned NumElems = VT.getVectorNumElements();
bool Changed = false;
SmallVector<int, 8> MaskVec;
SVOp->getMask(MaskVec);
for (unsigned i = 0; i != NumElems; ++i) {
if (MaskVec[i] > (int)NumElems) {
MaskVec[i] = NumElems;
Changed = true;
}
}
if (Changed)
return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
SVOp->getOperand(1), &MaskVec[0]);
return SDValue(SVOp, 0);
}
/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
/// operation of specified width.
Owen Anderson
committed
static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
SDValue V2) {
unsigned NumElems = VT.getVectorNumElements();
SmallVector<int, 8> Mask;
Mask.push_back(NumElems);
for (unsigned i = 1; i != NumElems; ++i)
Mask.push_back(i);
return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
}
/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
Owen Anderson
committed
static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
SDValue V2) {
unsigned NumElems = VT.getVectorNumElements();
SmallVector<int, 8> Mask;
for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
Mask.push_back(i);
Mask.push_back(i + NumElems);
return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
Owen Anderson
committed
static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
SDValue V2) {
unsigned NumElems = VT.getVectorNumElements();
unsigned Half = NumElems/2;
SmallVector<int, 8> Mask;
for (unsigned i = 0; i != Half; ++i) {
Mask.push_back(i + Half);
Mask.push_back(i + NumElems + Half);
}
return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
Evan Cheng
committed
/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG,
bool HasSSE2) {
if (SV->getValueType(0).getVectorNumElements() <= 4)
return SDValue(SV, 0);
Owen Anderson
committed
EVT PVT = MVT::v4f32;
Owen Anderson
committed
EVT VT = SV->getValueType(0);
DebugLoc dl = SV->getDebugLoc();
SDValue V1 = SV->getOperand(0);
int NumElems = VT.getVectorNumElements();
int EltNo = SV->getSplatIndex();
// unpack elements to the correct location
while (NumElems > 4) {
if (EltNo < NumElems/2) {
V1 = getUnpackl(DAG, dl, VT, V1, V1);
} else {
V1 = getUnpackh(DAG, dl, VT, V1, V1);
EltNo -= NumElems/2;
Evan Cheng
committed
}
NumElems >>= 1;
// Perform the splat.
int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
/// vector of zero or undef vector. This produces a shuffle where the low
/// element of V2 is swizzled into the zero/undef vector, landing at element
/// Idx. This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3).
static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
Evan Cheng
committed
bool isZero, bool HasSSE2,
SelectionDAG &DAG) {
Owen Anderson
committed
EVT VT = V2.getValueType();
? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
unsigned NumElems = VT.getVectorNumElements();
SmallVector<int, 16> MaskVec;
for (unsigned i = 0; i != NumElems; ++i)
// If this is the insertion idx, put the low elt of V2 here.
MaskVec.push_back(i == Idx ? NumElems : i);
return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
}
/// getNumOfConsecutiveZeros - Return the number of elements in a result of
/// a shuffle that is zero.
static
unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, int NumElems,
bool Low, SelectionDAG &DAG) {
unsigned NumZeros = 0;
for (int i = 0; i < NumElems; ++i) {
unsigned Index = Low ? i : NumElems-i-1;
int Idx = SVOp->getMaskElt(Index);
if (Idx < 0) {
++NumZeros;
continue;
}
SDValue Elt = DAG.getShuffleScalarElt(SVOp, Index);
Evan Cheng
committed
if (Elt.getNode() && X86::isZeroNode(Elt))
++NumZeros;
else
break;
}
return NumZeros;
}
/// isVectorShift - Returns true if the shuffle can be implemented as a
/// logical left or right shift of a vector.
/// FIXME: split into pslldqi, psrldqi, palignr variants.
static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
int NumElems = SVOp->getValueType(0).getVectorNumElements();
isLeft = true;
unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, true, DAG);
if (!NumZeros) {
isLeft = false;
NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, false, DAG);
if (!NumZeros)
return false;
}
bool SeenV1 = false;
bool SeenV2 = false;
for (int i = NumZeros; i < NumElems; ++i) {
int Val = isLeft ? (i - NumZeros) : i;
int Idx = SVOp->getMaskElt(isLeft ? i : (i - NumZeros));
if (Idx < 0)
continue;
if (Idx < NumElems)
SeenV1 = true;
else {
Idx -= NumElems;
SeenV2 = true;
}
if (Idx != Val)
return false;
}
if (SeenV1 && SeenV2)
return false;
ShVal = SeenV1 ? SVOp->getOperand(0) : SVOp->getOperand(1);
ShAmt = NumZeros;
return true;
}
/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
///
static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
unsigned NumNonZero, unsigned NumZero,
if (NumNonZero > 8)
DebugLoc dl = Op.getDebugLoc();
bool First = true;
for (unsigned i = 0; i < 16; ++i) {
bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
if (ThisIsNonZero && First) {
if (NumZero)
Owen Anderson
committed
V = getZeroVector(MVT::v8i16, true, DAG, dl);
Owen Anderson
committed
V = DAG.getUNDEF(MVT::v8i16);
First = false;
}
if ((i & 1) != 0) {
bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
if (LastIsNonZero) {
LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
Owen Anderson
committed
MVT::i16, Op.getOperand(i-1));
}
if (ThisIsNonZero) {
Owen Anderson
committed
ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
ThisElt, DAG.getConstant(8, MVT::i8));
if (LastIsNonZero)
Owen Anderson
committed
ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
} else
ThisElt = LastElt;
Gabor Greif
committed
if (ThisElt.getNode())
Owen Anderson
committed
V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
DAG.getIntPtrConstant(i/2));
Owen Anderson
committed
return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
unsigned NumNonZero, unsigned NumZero,
if (NumNonZero > 4)
DebugLoc dl = Op.getDebugLoc();
bool First = true;
for (unsigned i = 0; i < 8; ++i) {
bool isNonZero = (NonZeros & (1 << i)) != 0;
if (isNonZero) {
if (First) {
if (NumZero)
Owen Anderson
committed
V = getZeroVector(MVT::v8i16, true, DAG, dl);
Owen Anderson
committed
V = DAG.getUNDEF(MVT::v8i16);
First = false;
}
V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
Owen Anderson
committed
MVT::v8i16, V, Op.getOperand(i),
DAG.getIntPtrConstant(i));
}
}
return V;
}
/// getVShift - Return a vector logical shift node.
///
Owen Anderson
committed
static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
unsigned NumBits, SelectionDAG &DAG,
const TargetLowering &TLI, DebugLoc dl) {
bool isMMX = VT.getSizeInBits() == 64;
Owen Anderson
committed
EVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
DAG.getNode(Opc, dl, ShVT, SrcOp,
DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
}
Evan Cheng
committed
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
SDValue
X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
SelectionDAG &DAG) {
// Check if the scalar load can be widened into a vector load. And if
// the address is "base + cst" see if the cst can be "absorbed" into
// the shuffle mask.
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
SDValue Ptr = LD->getBasePtr();
if (!ISD::isNormalLoad(LD) || LD->isVolatile())
return SDValue();
EVT PVT = LD->getValueType(0);
if (PVT != MVT::i32 && PVT != MVT::f32)
return SDValue();
int FI = -1;
int64_t Offset = 0;
if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
FI = FINode->getIndex();
Offset = 0;
} else if (Ptr.getOpcode() == ISD::ADD &&
isa<ConstantSDNode>(Ptr.getOperand(1)) &&
isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
Offset = Ptr.getConstantOperandVal(1);
Ptr = Ptr.getOperand(0);
} else {
return SDValue();
}
SDValue Chain = LD->getChain();
// Make sure the stack object alignment is at least 16.
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
if (DAG.InferPtrAlignment(Ptr) < 16) {
if (MFI->isFixedObjectIndex(FI)) {
// Can't change the alignment. FIXME: It's possible to compute
// the exact stack offset and reference FI + adjust offset instead.
// If someone *really* cares about this. That's the way to implement it.
return SDValue();
Evan Cheng
committed
} else {
MFI->setObjectAlignment(FI, 16);
}
}
// (Offset % 16) must be multiple of 4. Then address is then
// Ptr + (Offset & ~15).
if (Offset < 0)
return SDValue();
if ((Offset % 16) & 3)
return SDValue();
int64_t StartOffset = Offset & ~15;
if (StartOffset)
Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
int EltNo = (Offset - StartOffset) >> 2;
int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,LD->getSrcValue(),0,
false, false, 0);
Evan Cheng
committed
// Canonicalize it to a v4i32 shuffle.
V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32, V1);
return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
DAG.getVectorShuffle(MVT::v4i32, dl, V1,
DAG.getUNDEF(MVT::v4i32), &Mask[0]));
}
return SDValue();
}
SDValue
X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
DebugLoc dl = Op.getDebugLoc();
// All zero's are handled with pxor, all one's are handled with pcmpeqd.
if (ISD::isBuildVectorAllZeros(Op.getNode())
|| ISD::isBuildVectorAllOnes(Op.getNode())) {
// Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
// 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
// eliminated on x86-32 hosts.
Owen Anderson
committed
if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
Gabor Greif
committed
if (ISD::isBuildVectorAllOnes(Op.getNode()))
return getOnesVector(Op.getValueType(), DAG, dl);
return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
Owen Anderson
committed
EVT VT = Op.getValueType();
EVT ExtVT = VT.getVectorElementType();
unsigned EVTBits = ExtVT.getSizeInBits();
unsigned NumElems = Op.getNumOperands();
unsigned NumZero = 0;
unsigned NumNonZero = 0;
unsigned NonZeros = 0;
bool IsAllConstants = true;
for (unsigned i = 0; i < NumElems; ++i) {
Evan Cheng
committed
if (Elt.getOpcode() == ISD::UNDEF)
continue;
Values.insert(Elt);
if (Elt.getOpcode() != ISD::Constant &&
Elt.getOpcode() != ISD::ConstantFP)
IsAllConstants = false;
Evan Cheng
committed
if (X86::isZeroNode(Elt))
Evan Cheng
committed
NumZero++;
else {
NonZeros |= (1 << i);
NumNonZero++;
}
}
if (NumNonZero == 0) {
// All undef vector. Return an UNDEF. All zero vectors were handled above.
return DAG.getUNDEF(VT);
}
// Special case for single non-zero, non-undef, element.
if (NumNonZero == 1) {
unsigned Idx = CountTrailingZeros_32(NonZeros);
// If this is an insertion of an i64 value on x86-32, and if the top bits of
// the value are obviously zero, truncate the value to i32 and do the
// insertion that way. Only do this if the value is non-constant or if the
// value is a constant being inserted into element 0. It is cheaper to do
// a constant pool load than it is to do a movd + shuffle.
Owen Anderson
committed
if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
(!IsAllConstants || Idx == 0)) {
if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
// Handle MMX and SSE both.
Owen Anderson
committed
EVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
// Truncate the value (which may itself be a constant) to i32, and
// convert it to a vector with movd (S2V+shuffle to zero extend).
Owen Anderson
committed
Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
Evan Cheng
committed
Item = getShuffleVectorZeroOrUndef(Item, 0, true,
Subtarget->hasSSE2(), DAG);
// Now we have our 32-bit value zero extended in the low element of
// a vector. If Idx != 0, swizzle it into place.
if (Idx != 0) {
SmallVector<int, 4> Mask;
Mask.push_back(Idx);
for (unsigned i = 1; i != VecElts; ++i)
Mask.push_back(i);
Item = DAG.getVectorShuffle(VecVT, dl, Item,
&Mask[0]);
return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
// If we have a constant or non-constant insertion into the low element of
// a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
// the rest of the elements. This will be matched as movd/movq/movss/movsd
// depending on what the source datatype is.
if (Idx == 0) {
if (NumZero == 0) {
return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
Owen Anderson
committed
} else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
(ExtVT == MVT::i64 && Subtarget->is64Bit())) {
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
// Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
DAG);
Owen Anderson
committed
} else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
EVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32;
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
Item = getShuffleVectorZeroOrUndef(Item, 0, true,
Subtarget->hasSSE2(), DAG);
return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
}
// Is it a vector logical left shift?
if (NumElems == 2 && Idx == 1 &&
Evan Cheng
committed
X86::isZeroNode(Op.getOperand(0)) &&
!X86::isZeroNode(Op.getOperand(1))) {
unsigned NumBits = VT.getSizeInBits();
return getVShift(true, VT,
DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
VT, Op.getOperand(1)),
}
if (IsAllConstants) // Otherwise, it's better to do a constpool load.
// Otherwise, if this is a vector with i32 or f32 elements, and the element
// is a non-constant being inserted into an element other than the low one,
// we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka
// movd/movss) to move this into the low element, then shuffle it into
// place.
if (EVTBits == 32) {
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
// Turn it into a shuffle of zero and zero-extended scalar to vector.
Evan Cheng
committed
Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
Subtarget->hasSSE2(), DAG);
SmallVector<int, 8> MaskVec;
for (unsigned i = 0; i < NumElems; i++)
MaskVec.push_back(i == Idx ? 0 : 1);
return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
}
}
// Splat is obviously ok. Let legalizer expand it to a shuffle.
Evan Cheng
committed
if (Values.size() == 1) {
if (EVTBits == 32) {
// Instead of a shuffle like this:
// shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
// Check if it's possible to issue this instead.
// shuffle (vload ptr)), undef, <1, 1, 1, 1>
unsigned Idx = CountTrailingZeros_32(NonZeros);
SDValue Item = Op.getOperand(Idx);
if (Op.getNode()->isOnlyUserOf(Item.getNode()))
return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
}
Evan Cheng
committed
}
// A vector full of immediates; various special cases are already
// handled, so this is best done with a single constant-pool load.
if (IsAllConstants)
// Let legalizer expand 2-wide build_vectors.
Evan Cheng
committed
if (EVTBits == 64) {
if (NumNonZero == 1) {
// One half is zero or undef.
unsigned Idx = CountTrailingZeros_32(NonZeros);
SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
Evan Cheng
committed
Op.getOperand(Idx));
Evan Cheng
committed
return getShuffleVectorZeroOrUndef(V2, Idx, true,
Subtarget->hasSSE2(), DAG);
Evan Cheng
committed
}
Evan Cheng
committed
}
// If element VT is < 32 bits, convert it to inserts into a zero vector.
if (EVTBits == 8 && NumElems == 16) {
SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
Gabor Greif
committed
if (V.getNode()) return V;
if (EVTBits == 16 && NumElems == 8) {
SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
Gabor Greif
committed
if (V.getNode()) return V;
}
// If element VT is == 32 bits, turn it into a number of shuffles.
V.resize(NumElems);
if (NumElems == 4 && NumZero > 0) {
for (unsigned i = 0; i < 4; ++i) {
bool isZero = !(NonZeros & (1 << i));
if (isZero)
V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
}
for (unsigned i = 0; i < 2; ++i) {
switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
default: break;
case 0:
V[i] = V[i*2]; // Must be a zero vector.
break;
case 1:
V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
break;
case 2:
V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
break;
case 3:
V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
break;
}
}
SmallVector<int, 8> MaskVec;
bool Reverse = (NonZeros & 0x3) == 2;
for (unsigned i = 0; i < 2; ++i)
MaskVec.push_back(Reverse ? 1-i : i);
Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
for (unsigned i = 0; i < 2; ++i)
MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
}
if (Values.size() > 2) {
// If we have SSE 4.1, Expand into a number of inserts unless the number of
// values to be inserted is equal to the number of elements, in which case
// use the unpack code below in the hopes of matching the consecutive elts
// FIXME: We could probably just check that here directly.
if (Values.size() < NumElems && VT.getSizeInBits() == 128 &&
getSubtarget()->hasSSE41()) {
V[0] = DAG.getUNDEF(VT);
for (unsigned i = 0; i < NumElems; ++i)
if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
V[0] = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V[0],
Op.getOperand(i), DAG.getIntPtrConstant(i));
return V[0];
}
// Expand into a number of unpckl*.
// e.g. for v4f32
// Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
// : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
// Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
for (unsigned i = 0; i < NumElems; ++i)
V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
NumElems >>= 1;
while (NumElems != 0) {
for (unsigned i = 0; i < NumElems; ++i)
V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + NumElems]);
NumElems >>= 1;
}
return V[0];
}
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
SDValue
X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
// We support concatenate two MMX registers and place them in a MMX
// register. This is better than doing a stack convert.
DebugLoc dl = Op.getDebugLoc();
EVT ResVT = Op.getValueType();
assert(Op.getNumOperands() == 2);
assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
int Mask[2];
SDValue InVec = DAG.getNode(ISD::BIT_CONVERT,dl, MVT::v1i64, Op.getOperand(0));
SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
InVec = Op.getOperand(1);
if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
unsigned NumElts = ResVT.getVectorNumElements();
VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
} else {
InVec = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v1i64, InVec);
SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
Mask[0] = 0; Mask[1] = 2;
VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
}
return DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
}
// v8i16 shuffles - Prefer shuffles in the following order:
// 1. [all] pshuflw, pshufhw, optional move
// 2. [ssse3] 1 x pshufb
// 3. [ssse3] 2 x pshufb + 1 x por
// 4. [all] mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp,
SelectionDAG &DAG, X86TargetLowering &TLI) {
SDValue V1 = SVOp->getOperand(0);
SDValue V2 = SVOp->getOperand(1);
DebugLoc dl = SVOp->getDebugLoc();
SmallVector<int, 8> MaskVals;
// Determine if more than 1 of the words in each of the low and high quadwords
// of the result come from the same quadword of one of the two inputs. Undef
// mask values count as coming from any quadword, for better codegen.
SmallVector<unsigned, 4> LoQuad(4);
SmallVector<unsigned, 4> HiQuad(4);
BitVector InputQuads(4);
for (unsigned i = 0; i < 8; ++i) {
SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
int EltIdx = SVOp->getMaskElt(i);
MaskVals.push_back(EltIdx);
if (EltIdx < 0) {
++Quad[0];
++Quad[1];
++Quad[2];
++Quad[3];
continue;
}
++Quad[EltIdx / 4];
InputQuads.set(EltIdx / 4);
}
unsigned MaxQuad = 1;
for (unsigned i = 0; i < 4; ++i) {
if (LoQuad[i] > MaxQuad) {
BestLoQuad = i;
MaxQuad = LoQuad[i];
}
}
MaxQuad = 1;
for (unsigned i = 0; i < 4; ++i) {
if (HiQuad[i] > MaxQuad) {
BestHiQuad = i;
MaxQuad = HiQuad[i];
}
}
// For SSSE3, If all 8 words of the result come from only 1 quadword of each
// of the two input vectors, shuffle them into one input vector so only a
// single pshufb instruction is necessary. If There are more than 2 input
// quads, disable the next transformation since it does not help SSSE3.
bool V1Used = InputQuads[0] || InputQuads[1];
bool V2Used = InputQuads[2] || InputQuads[3];
if (TLI.getSubtarget()->hasSSSE3()) {
if (InputQuads.count() == 2 && V1Used && V2Used) {
BestLoQuad = InputQuads.find_first();
BestHiQuad = InputQuads.find_next(BestLoQuad);
}
if (InputQuads.count() > 2) {
BestLoQuad = -1;
BestHiQuad = -1;
}
}
// If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
// the shuffle mask. If a quad is scored as -1, that means that it contains
// words from all 4 input quadwords.
SDValue NewV;
if (BestLoQuad >= 0 || BestHiQuad >= 0) {
SmallVector<int, 8> MaskV;
MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
Owen Anderson
committed
DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
// Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
// source words for the shuffle, to aid later transformations.
bool AllWordsInNewV = true;
Mon P Wang
committed
bool InOrder[2] = { true, true };
for (unsigned i = 0; i != 8; ++i) {
int idx = MaskVals[i];
Mon P Wang
committed
if (idx != (int)i)
InOrder[i/4] = false;
if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
continue;
AllWordsInNewV = false;
break;
}
bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
if (AllWordsInNewV) {
for (int i = 0; i != 8; ++i) {
int idx = MaskVals[i];
if (idx < 0)
continue;
idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
if ((idx != i) && idx < 4)
pshufhw = false;
if ((idx != i) && idx > 3)
pshuflw = false;
}
V1 = NewV;
V2Used = false;
BestLoQuad = 0;
BestHiQuad = 1;
}
// If we've eliminated the use of V2, and the new mask is a pshuflw or
// pshufhw, that's as cheap as it gets. Return the new shuffle.
Mon P Wang
committed
if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
return DAG.getVectorShuffle(MVT::v8i16, dl, NewV,