Newer
Older
//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
Alkis Evlogimenos
committed
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
Alkis Evlogimenos
committed
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveInterval analysis pass which is used
// by the Linear Scan Register allocator. This pass linearizes the
// basic blocks of the function in DFS order and uses the
// LiveVariables pass to conservatively compute live intervals for
// each virtual and physical register.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "liveintervals"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "VirtRegMap.h"
#include "llvm/Value.h"
Dan Gohman
committed
#include "llvm/Analysis/AliasAnalysis.h"
Jakob Stoklund Olesen
committed
#include "llvm/CodeGen/CalcSpillWeights.h"
Alkis Evlogimenos
committed
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
Evan Cheng
committed
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
Alkis Evlogimenos
committed
#include "llvm/CodeGen/Passes.h"
#include "llvm/Target/TargetRegisterInfo.h"
Alkis Evlogimenos
committed
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
Evan Cheng
committed
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
Lang Hames
committed
#include <limits>
Alkis Evlogimenos
committed
using namespace llvm;
// Hidden options for help debugging.
static cl::opt<bool> DisableReMat("disable-rematerialization",
cl::init(false), cl::Hidden);
Evan Cheng
committed
STATISTIC(numIntervals , "Number of original intervals");
STATISTIC(numFolds , "Number of loads/stores folded into instructions");
STATISTIC(numSplits , "Number of intervals split");
Owen Anderson
committed
INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
"Live Interval Analysis", false, false)
INITIALIZE_PASS_DEPENDENCY(LiveVariables)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(PHIElimination)
INITIALIZE_PASS_DEPENDENCY(TwoAddressInstructionPass)
INITIALIZE_PASS_DEPENDENCY(ProcessImplicitDefs)
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
"Live Interval Analysis", false, false)
Alkis Evlogimenos
committed
Chris Lattner
committed
void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
Dan Gohman
committed
AU.addRequired<AliasAnalysis>();
AU.addPreserved<AliasAnalysis>();
Evan Cheng
committed
AU.addPreserved<LiveVariables>();
AU.addRequired<MachineLoopInfo>();
AU.addPreserved<MachineLoopInfo>();
AU.addPreservedID(MachineDominatorsID);
if (!StrongPHIElim) {
AU.addPreservedID(PHIEliminationID);
AU.addRequiredID(PHIEliminationID);
}
AU.addRequiredID(TwoAddressInstructionPassID);
AU.addPreserved<ProcessImplicitDefs>();
AU.addRequired<ProcessImplicitDefs>();
AU.addPreserved<SlotIndexes>();
AU.addRequiredTransitive<SlotIndexes>();
MachineFunctionPass::getAnalysisUsage(AU);
Alkis Evlogimenos
committed
}
Chris Lattner
committed
void LiveIntervals::releaseMemory() {
Owen Anderson
committed
// Free the live intervals themselves.
for (DenseMap<unsigned, LiveInterval*>::iterator I = r2iMap_.begin(),
Bob Wilson
committed
E = r2iMap_.end(); I != E; ++I)
Owen Anderson
committed
delete I->second;
// Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
VNInfoAllocator.Reset();
Evan Cheng
committed
while (!CloneMIs.empty()) {
MachineInstr *MI = CloneMIs.back();
CloneMIs.pop_back();
mf_->DeleteMachineInstr(MI);
}
}
Owen Anderson
committed
/// runOnMachineFunction - Register allocate the whole function
///
bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
mf_ = &fn;
mri_ = &mf_->getRegInfo();
tm_ = &fn.getTarget();
tri_ = tm_->getRegisterInfo();
tii_ = tm_->getInstrInfo();
Dan Gohman
committed
aa_ = &getAnalysis<AliasAnalysis>();
Owen Anderson
committed
lv_ = &getAnalysis<LiveVariables>();
Owen Anderson
committed
allocatableRegs_ = tri_->getAllocatableSet(fn);
Alkis Evlogimenos
committed
Alkis Evlogimenos
committed
Alkis Evlogimenos
committed
}
void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
OS << "********** INTERVALS **********\n";
for (const_iterator I = begin(), E = end(); I != E; ++I) {
I->second->print(OS, tri_);
OS << "\n";
Evan Cheng
committed
printInstrs(OS);
}
void LiveIntervals::printInstrs(raw_ostream &OS) const {
OS << "********** MACHINEINSTRS **********\n";
Jakob Stoklund Olesen
committed
mf_->print(OS, indexes_);
Evan Cheng
committed
void LiveIntervals::dumpInstrs() const {
Evan Cheng
committed
}
Jakob Stoklund Olesen
committed
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
bool LiveIntervals::conflictsWithPhysReg(const LiveInterval &li,
VirtRegMap &vrm, unsigned reg) {
// We don't handle fancy stuff crossing basic block boundaries
if (li.ranges.size() != 1)
return true;
const LiveRange &range = li.ranges.front();
SlotIndex idx = range.start.getBaseIndex();
SlotIndex end = range.end.getPrevSlot().getBaseIndex().getNextIndex();
// Skip deleted instructions
MachineInstr *firstMI = getInstructionFromIndex(idx);
while (!firstMI && idx != end) {
idx = idx.getNextIndex();
firstMI = getInstructionFromIndex(idx);
}
if (!firstMI)
return false;
// Find last instruction in range
SlotIndex lastIdx = end.getPrevIndex();
MachineInstr *lastMI = getInstructionFromIndex(lastIdx);
while (!lastMI && lastIdx != idx) {
lastIdx = lastIdx.getPrevIndex();
lastMI = getInstructionFromIndex(lastIdx);
}
if (!lastMI)
return false;
// Range cannot cross basic block boundaries or terminators
MachineBasicBlock *MBB = firstMI->getParent();
if (MBB != lastMI->getParent() || lastMI->getDesc().isTerminator())
return true;
MachineBasicBlock::const_iterator E = lastMI;
++E;
for (MachineBasicBlock::const_iterator I = firstMI; I != E; ++I) {
const MachineInstr &MI = *I;
// Allow copies to and from li.reg
if (MI.isCopy())
if (MI.getOperand(0).getReg() == li.reg ||
MI.getOperand(1).getReg() == li.reg)
continue;
Jakob Stoklund Olesen
committed
// Check for operands using reg
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
const MachineOperand& mop = MI.getOperand(i);
if (!mop.isReg())
continue;
unsigned PhysReg = mop.getReg();
if (PhysReg == 0 || PhysReg == li.reg)
continue;
if (TargetRegisterInfo::isVirtualRegister(PhysReg)) {
if (!vrm.hasPhys(PhysReg))
continue;
Jakob Stoklund Olesen
committed
PhysReg = vrm.getPhys(PhysReg);
}
Jakob Stoklund Olesen
committed
if (PhysReg && tri_->regsOverlap(PhysReg, reg))
return true;
}
}
Jakob Stoklund Olesen
committed
// No conflicts found.
return false;
}
Jakob Stoklund Olesen
committed
bool LiveIntervals::conflictsWithAliasRef(LiveInterval &li, unsigned Reg,
Evan Cheng
committed
SmallPtrSet<MachineInstr*,32> &JoinedCopies) {
for (LiveInterval::Ranges::const_iterator
I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
for (SlotIndex index = I->start.getBaseIndex(),
end = I->end.getPrevSlot().getBaseIndex().getNextIndex();
index != end;
index = index.getNextIndex()) {
MachineInstr *MI = getInstructionFromIndex(index);
if (!MI)
continue; // skip deleted instructions
Evan Cheng
committed
if (JoinedCopies.count(MI))
continue;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand& MO = MI->getOperand(i);
if (!MO.isReg())
continue;
unsigned PhysReg = MO.getReg();
Jakob Stoklund Olesen
committed
if (PhysReg == 0 || PhysReg == Reg ||
TargetRegisterInfo::isVirtualRegister(PhysReg))
Evan Cheng
committed
continue;
Jakob Stoklund Olesen
committed
if (tri_->regsOverlap(Reg, PhysReg))
Evan Cheng
committed
return true;
}
}
}
return false;
}
static
bool MultipleDefsBySameMI(const MachineInstr &MI, unsigned MOIdx) {
unsigned Reg = MI.getOperand(MOIdx).getReg();
for (unsigned i = MOIdx+1, e = MI.getNumOperands(); i < e; ++i) {
const MachineOperand &MO = MI.getOperand(i);
if (!MO.isReg())
continue;
if (MO.getReg() == Reg && MO.isDef()) {
assert(MI.getOperand(MOIdx).getSubReg() != MO.getSubReg() &&
MI.getOperand(MOIdx).getSubReg() &&
(MO.getSubReg() || MO.isImplicit()));
return true;
}
}
return false;
}
/// isPartialRedef - Return true if the specified def at the specific index is
/// partially re-defining the specified live interval. A common case of this is
/// a definition of the sub-register.
bool LiveIntervals::isPartialRedef(SlotIndex MIIdx, MachineOperand &MO,
LiveInterval &interval) {
if (!MO.getSubReg() || MO.isEarlyClobber())
return false;
SlotIndex RedefIndex = MIIdx.getDefIndex();
const LiveRange *OldLR =
interval.getLiveRangeContaining(RedefIndex.getUseIndex());
MachineInstr *DefMI = getInstructionFromIndex(OldLR->valno->def);
if (DefMI != 0) {
return DefMI->findRegisterDefOperandIdx(interval.reg) != -1;
}
return false;
}
void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
Alkis Evlogimenos
committed
MachineBasicBlock::iterator mi,
MachineOperand& MO,
Evan Cheng
committed
unsigned MOIdx,
LiveInterval &interval) {
Jakob Stoklund Olesen
committed
DEBUG(dbgs() << "\t\tregister: " << PrintReg(interval.reg, tri_));
// Virtual registers may be defined multiple times (due to phi
// elimination and 2-addr elimination). Much of what we do only has to be
// done once for the vreg. We use an empty interval to detect the first
Evan Cheng
committed
LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
if (interval.empty()) {
// Get the Idx of the defining instructions.
// Earlyclobbers move back one, so that they overlap the live range
// of inputs.
if (MO.isEarlyClobber())
Jakob Stoklund Olesen
committed
// Make sure the first definition is not a partial redefinition. Add an
// <imp-def> of the full register.
if (MO.getSubReg())
mi->addRegisterDefined(interval.reg);
Evan Cheng
committed
MachineInstr *CopyMI = NULL;
Jakob Stoklund Olesen
committed
if (mi->isCopyLike()) {
Evan Cheng
committed
CopyMI = mi;
Jakob Stoklund Olesen
committed
}
VNInfo *ValNo = interval.getNextValue(defIndex, CopyMI, VNInfoAllocator);
assert(ValNo->id == 0 && "First value in interval is not 0?");
// Loop over all of the blocks that the vreg is defined in. There are
// two cases we have to handle here. The most common case is a vreg
// whose lifetime is contained within a basic block. In this case there
// will be a single kill, in MBB, which comes after the definition.
if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
// FIXME: what about dead vars?
killIdx = getInstructionIndex(vi.Kills[0]).getDefIndex();
// If the kill happens after the definition, we have an intra-block
// live range.
if (killIdx > defIndex) {
Jeffrey Yasskin
committed
assert(vi.AliveBlocks.empty() &&
"Shouldn't be alive across any blocks!");
LiveRange LR(defIndex, killIdx, ValNo);
// The other case we handle is when a virtual register lives to the end
// of the defining block, potentially live across some blocks, then is
// live into some number of blocks, but gets killed. Start by adding a
// range that goes from this definition to the end of the defining block.
LiveRange NewLR(defIndex, getMBBEndIdx(mbb), ValNo);
bool PHIJoin = lv_->isPHIJoin(interval.reg);
if (PHIJoin) {
// A phi join register is killed at the end of the MBB and revived as a new
// valno in the killing blocks.
assert(vi.AliveBlocks.empty() && "Phi join can't pass through blocks");
DEBUG(dbgs() << " phi-join");
ValNo->setHasPHIKill(true);
} else {
// Iterate over all of the blocks that the variable is completely
// live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
// live interval.
for (SparseBitVector<>::iterator I = vi.AliveBlocks.begin(),
E = vi.AliveBlocks.end(); I != E; ++I) {
MachineBasicBlock *aliveBlock = mf_->getBlockNumbered(*I);
LiveRange LR(getMBBStartIdx(aliveBlock), getMBBEndIdx(aliveBlock), ValNo);
interval.addRange(LR);
DEBUG(dbgs() << " +" << LR);
}
}
// Finally, this virtual register is live from the start of any killing
// block to the 'use' slot of the killing instruction.
for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
MachineInstr *Kill = vi.Kills[i];
SlotIndex Start = getMBBStartIdx(Kill->getParent());
SlotIndex killIdx = getInstructionIndex(Kill).getDefIndex();
// Create interval with one of a NEW value number. Note that this value
// number isn't actually defined by an instruction, weird huh? :)
if (PHIJoin) {
assert(getInstructionFromIndex(Start) == 0 &&
"PHI def index points at actual instruction.");
ValNo = interval.getNextValue(Start, 0, VNInfoAllocator);
ValNo->setIsPHIDef(true);
}
LiveRange LR(Start, killIdx, ValNo);
if (MultipleDefsBySameMI(*mi, MOIdx))
// Multiple defs of the same virtual register by the same instruction.
// e.g. %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ...
// This is likely due to elimination of REG_SEQUENCE instructions. Return
// here since there is nothing to do.
return;
// If this is the second time we see a virtual register definition, it
// must be due to phi elimination or two addr elimination. If this is
// the result of two address elimination, then the vreg is one of the
// def-and-use register operand.
// It may also be partial redef like this:
// 80 %reg1041:6<def> = VSHRNv4i16 %reg1034<kill>, 12, pred:14, pred:%reg0
// 120 %reg1041:5<def> = VSHRNv4i16 %reg1039<kill>, 12, pred:14, pred:%reg0
bool PartReDef = isPartialRedef(MIIdx, MO, interval);
if (PartReDef || mi->isRegTiedToUseOperand(MOIdx)) {
// If this is a two-address definition, then we have already processed
// the live range. The only problem is that we didn't realize there
// are actually two values in the live interval. Because of this we
// need to take the LiveRegion that defines this register and split it
// into two values.
if (MO.isEarlyClobber())
const LiveRange *OldLR =
interval.getLiveRangeContaining(RedefIndex.getUseIndex());
VNInfo *OldValNo = OldLR->valno;
SlotIndex DefIndex = OldValNo->def.getDefIndex();
// Delete the previous value, which should be short and continuous,
// because the 2-addr copy must be in the same MBB as the redef.
interval.removeRange(DefIndex, RedefIndex);
Chris Lattner
committed
// The new value number (#1) is defined by the instruction we claimed
// defined value #0.
VNInfo *ValNo = interval.createValueCopy(OldValNo, VNInfoAllocator);
Chris Lattner
committed
// Value#0 is now defined by the 2-addr instruction.
Evan Cheng
committed
OldValNo->def = RedefIndex;
Evan Cheng
committed
OldValNo->setCopy(0);
// A re-def may be a copy. e.g. %reg1030:6<def> = VMOVD %reg1026, ...
Jakob Stoklund Olesen
committed
if (PartReDef && mi->isCopyLike())
Evan Cheng
committed
OldValNo->setCopy(&*mi);
// Add the new live interval which replaces the range for the input copy.
LiveRange LR(DefIndex, RedefIndex, ValNo);
interval.addRange(LR);
// If this redefinition is dead, we need to add a dummy unit live
// range covering the def slot.
Owen Anderson
committed
if (MO.isDead())
interval.addRange(LiveRange(RedefIndex, RedefIndex.getStoreIndex(),
OldValNo));
} else if (lv_->isPHIJoin(interval.reg)) {
// In the case of PHI elimination, each variable definition is only
// live until the end of the block. We've already taken care of the
// rest of the live range.
if (MO.isEarlyClobber())
Evan Cheng
committed
VNInfo *ValNo;
Evan Cheng
committed
MachineInstr *CopyMI = NULL;
Jakob Stoklund Olesen
committed
if (mi->isCopyLike())
Evan Cheng
committed
CopyMI = mi;
ValNo = interval.getNextValue(defIndex, CopyMI, VNInfoAllocator);
SlotIndex killIndex = getMBBEndIdx(mbb);
LiveRange LR(defIndex, killIndex, ValNo);
DEBUG(dbgs() << " phi-join +" << LR);
} else {
llvm_unreachable("Multiply defined register");
Alkis Evlogimenos
committed
Alkis Evlogimenos
committed
}
void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
Alkis Evlogimenos
committed
MachineBasicBlock::iterator mi,
Owen Anderson
committed
MachineOperand& MO,
Chris Lattner
committed
LiveInterval &interval,
Evan Cheng
committed
MachineInstr *CopyMI) {
// A physical register cannot be live across basic block, so its
// lifetime must end somewhere in its defining basic block.
Jakob Stoklund Olesen
committed
DEBUG(dbgs() << "\t\tregister: " << PrintReg(interval.reg, tri_));
SlotIndex baseIndex = MIIdx;
SlotIndex start = baseIndex.getDefIndex();
// Earlyclobbers move back one.
if (MO.isEarlyClobber())
// If it is not used after definition, it is considered dead at
// the instruction defining it. Hence its interval is:
// [defSlot(def), defSlot(def)+1)
// For earlyclobbers, the defSlot was pushed back one; the extra
// advance below compensates.
Owen Anderson
committed
if (MO.isDead()) {
goto exit;
Alkis Evlogimenos
committed
// If it is not dead on definition, it must be killed by a
// subsequent instruction. Hence its interval is:
// [defSlot(def), useSlot(kill)+1)
while (++mi != MBB->end()) {
if (mi->isDebugValue())
continue;
if (getInstructionFromIndex(baseIndex) == 0)
baseIndex = indexes_->getNextNonNullIndex(baseIndex);
if (mi->killsRegister(interval.reg, tri_)) {
goto exit;
Evan Cheng
committed
} else {
int DefIdx = mi->findRegisterDefOperandIdx(interval.reg,false,false,tri_);
Evan Cheng
committed
if (DefIdx != -1) {
if (mi->isRegTiedToUseOperand(DefIdx)) {
// Two-address instruction.
Evan Cheng
committed
} else {
// Another instruction redefines the register before it is ever read.
// Then the register is essentially dead at the instruction that
// defines it. Hence its interval is:
Evan Cheng
committed
// [defSlot(def), defSlot(def)+1)
Evan Cheng
committed
}
goto exit;
}
// The only case we should have a dead physreg here without a killing or
// instruction where we know it's dead is if it is live-in to the function
Evan Cheng
committed
// and never used. Another possible case is the implicit use of the
// physical register has been deleted by two-address pass.
Alkis Evlogimenos
committed
exit:
assert(start < end && "did not find end of interval?");
Jakob Stoklund Olesen
committed
VNInfo *ValNo = interval.getVNInfoAt(start);
bool Extend = ValNo != 0;
if (!Extend)
ValNo = interval.getNextValue(start, CopyMI, VNInfoAllocator);
if (Extend && MO.isEarlyClobber())
LiveRange LR(start, end, ValNo);
Alkis Evlogimenos
committed
}
void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
MachineBasicBlock::iterator MI,
Evan Cheng
committed
MachineOperand& MO,
unsigned MOIdx) {
Owen Anderson
committed
if (TargetRegisterInfo::isVirtualRegister(MO.getReg()))
Evan Cheng
committed
handleVirtualRegisterDef(MBB, MI, MIIdx, MO, MOIdx,
Owen Anderson
committed
getOrCreateInterval(MO.getReg()));
else if (allocatableRegs_[MO.getReg()]) {
Evan Cheng
committed
MachineInstr *CopyMI = NULL;
Jakob Stoklund Olesen
committed
if (MI->isCopyLike())
Evan Cheng
committed
CopyMI = MI;
Evan Cheng
committed
handlePhysicalRegisterDef(MBB, MI, MIIdx, MO,
Owen Anderson
committed
getOrCreateInterval(MO.getReg()), CopyMI);
Owen Anderson
committed
for (const unsigned* AS = tri_->getSubRegisters(MO.getReg()); *AS; ++AS)
// If MI also modifies the sub-register explicitly, avoid processing it
// more than once. Do not pass in TRI here so it checks for exact match.
if (!MI->definesRegister(*AS))
Evan Cheng
committed
handlePhysicalRegisterDef(MBB, MI, MIIdx, MO,
Owen Anderson
committed
getOrCreateInterval(*AS), 0);
Alkis Evlogimenos
committed
}
void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
Jakob Stoklund Olesen
committed
DEBUG(dbgs() << "\t\tlivein register: " << PrintReg(interval.reg, tri_));
// Look for kills, if it reaches a def before it's killed, then it shouldn't
// be considered a livein.
MachineBasicBlock::iterator mi = MBB->begin();
MachineBasicBlock::iterator E = MBB->end();
// Skip over DBG_VALUE at the start of the MBB.
if (mi != E && mi->isDebugValue()) {
while (++mi != E && mi->isDebugValue())
;
if (mi == E)
// MBB is empty except for DBG_VALUE's.
return;
}
SlotIndex baseIndex = MIIdx;
SlotIndex start = baseIndex;
if (getInstructionFromIndex(baseIndex) == 0)
baseIndex = indexes_->getNextNonNullIndex(baseIndex);
SlotIndex end = baseIndex;
bool SeenDefUse = false;
if (mi->killsRegister(interval.reg, tri_)) {
DEBUG(dbgs() << " killed");
end = baseIndex.getDefIndex();
SeenDefUse = true;
break;
} else if (mi->definesRegister(interval.reg, tri_)) {
// Another instruction redefines the register before it is ever read.
// Then the register is essentially dead at the instruction that defines
// it. Hence its interval is:
// [defSlot(def), defSlot(def)+1)
DEBUG(dbgs() << " dead");
end = start.getStoreIndex();
SeenDefUse = true;
break;
while (++mi != E && mi->isDebugValue())
// Skip over DBG_VALUE.
;
if (mi != E)
// Live-in register might not be used at all.
if (!SeenDefUse) {
end = baseIndex;
}
SlotIndex defIdx = getMBBStartIdx(MBB);
assert(getInstructionFromIndex(defIdx) == 0 &&
"PHI def index points at actual instruction.");
VNInfo *vni =
interval.getNextValue(defIdx, 0, VNInfoAllocator);
vni->setIsPHIDef(true);
LiveRange LR(start, end, vni);
Alkis Evlogimenos
committed
/// computeIntervals - computes the live intervals for virtual
Alkis Evlogimenos
committed
/// registers. for some ordering of the machine instructions [1,N] a
/// live interval is an interval [i, j) where 1 <= i <= j < N for
Alkis Evlogimenos
committed
/// which a variable is live
void LiveIntervals::computeIntervals() {
<< "********** Function: "
<< ((Value*)mf_->getFunction())->getName() << '\n');
Evan Cheng
committed
SmallVector<unsigned, 8> UndefUses;
for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end();
MBBI != E; ++MBBI) {
MachineBasicBlock *MBB = MBBI;
Evan Cheng
committed
if (MBB->empty())
continue;
Owen Anderson
committed
// Track the index of the current machine instr.
DEBUG(dbgs() << "BB#" << MBB->getNumber()
<< ":\t\t# derived from " << MBB->getName() << "\n");
// Create intervals for live-ins to this BB first.
for (MachineBasicBlock::livein_iterator LI = MBB->livein_begin(),
LE = MBB->livein_end(); LI != LE; ++LI) {
handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*LI));
// Multiple live-ins can alias the same register.
for (const unsigned* AS = tri_->getSubRegisters(*LI); *AS; ++AS)
if (!hasInterval(*AS))
handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*AS),
true);
Owen Anderson
committed
// Skip over empty initial indices.
if (getInstructionFromIndex(MIIndex) == 0)
MIIndex = indexes_->getNextNonNullIndex(MIIndex);
for (MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
MI != miEnd; ++MI) {
if (MI->isDebugValue())
for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
MachineOperand &MO = MI->getOperand(i);
Evan Cheng
committed
if (!MO.isReg() || !MO.getReg())
continue;
// handle register defs - build intervals
Evan Cheng
committed
if (MO.isDef())
Evan Cheng
committed
handleRegisterDef(MBB, MI, MIIndex, MO, i);
Evan Cheng
committed
else if (MO.isUndef())
UndefUses.push_back(MO.getReg());
// Move to the next instr slot.
MIIndex = indexes_->getNextNonNullIndex(MIIndex);
Alkis Evlogimenos
committed
}
Evan Cheng
committed
// Create empty intervals for registers defined by implicit_def's (except
// for those implicit_def that define values which are liveout of their
// blocks.
for (unsigned i = 0, e = UndefUses.size(); i != e; ++i) {
unsigned UndefReg = UndefUses[i];
(void)getOrCreateInterval(UndefReg);
}
Alkis Evlogimenos
committed
}
Alkis Evlogimenos
committed
Owen Anderson
committed
LiveInterval* LiveIntervals::createInterval(unsigned reg) {
float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? HUGE_VALF : 0.0F;
Owen Anderson
committed
return new LiveInterval(reg, Weight);
/// dupInterval - Duplicate a live interval. The caller is responsible for
/// managing the allocated memory.
LiveInterval* LiveIntervals::dupInterval(LiveInterval *li) {
LiveInterval *NewLI = createInterval(li->reg);
NewLI->Copy(*li, mri_, getVNInfoAllocator());
return NewLI;
}
/// shrinkToUses - After removing some uses of a register, shrink its live
/// range to just the remaining uses. This method does not compute reaching
/// defs for new uses, and it doesn't remove dead defs.
Jakob Stoklund Olesen
committed
void LiveIntervals::shrinkToUses(LiveInterval *li,
SmallVectorImpl<MachineInstr*> *dead) {
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
DEBUG(dbgs() << "Shrink: " << *li << '\n');
assert(TargetRegisterInfo::isVirtualRegister(li->reg)
&& "Can't only shrink physical registers");
// Find all the values used, including PHI kills.
SmallVector<std::pair<SlotIndex, VNInfo*>, 16> WorkList;
// Visit all instructions reading li->reg.
for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(li->reg);
MachineInstr *UseMI = I.skipInstruction();) {
if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg))
continue;
SlotIndex Idx = getInstructionIndex(UseMI).getUseIndex();
VNInfo *VNI = li->getVNInfoAt(Idx);
assert(VNI && "Live interval not live into reading instruction");
if (VNI->def == Idx) {
// Special case: An early-clobber tied operand reads and writes the
// register one slot early.
Idx = Idx.getPrevSlot();
VNI = li->getVNInfoAt(Idx);
assert(VNI && "Early-clobber tied value not available");
}
WorkList.push_back(std::make_pair(Idx, VNI));
}
// Create a new live interval with only minimal live segments per def.
LiveInterval NewLI(li->reg, 0);
for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
I != E; ++I) {
VNInfo *VNI = *I;
if (VNI->isUnused())
continue;
NewLI.addRange(LiveRange(VNI->def, VNI->def.getNextSlot(), VNI));
Jakob Stoklund Olesen
committed
// A use tied to an early-clobber def ends at the load slot and isn't caught
// above. Catch it here instead. This probably only ever happens for inline
// assembly.
if (VNI->def.isUse())
if (VNInfo *UVNI = li->getVNInfoAt(VNI->def.getLoadIndex()))
WorkList.push_back(std::make_pair(VNI->def.getLoadIndex(), UVNI));
Jakob Stoklund Olesen
committed
// Keep track of the PHIs that are in use.
SmallPtrSet<VNInfo*, 8> UsedPHIs;
// Extend intervals to reach all uses in WorkList.
while (!WorkList.empty()) {
SlotIndex Idx = WorkList.back().first;
VNInfo *VNI = WorkList.back().second;
WorkList.pop_back();
const MachineBasicBlock *MBB = getMBBFromIndex(Idx);
SlotIndex BlockStart = getMBBStartIdx(MBB);
Jakob Stoklund Olesen
committed
// Extend the live range for VNI to be live at Idx.
if (VNInfo *ExtVNI = NewLI.extendInBlock(BlockStart, Idx)) {
Jakob Stoklund Olesen
committed
assert(ExtVNI == VNI && "Unexpected existing value number");
// Is this a PHIDef we haven't seen before?
if (!VNI->isPHIDef() || VNI->def != BlockStart || !UsedPHIs.insert(VNI))
Jakob Stoklund Olesen
committed
continue;
// The PHI is live, make sure the predecessors are live-out.
for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
PE = MBB->pred_end(); PI != PE; ++PI) {
SlotIndex Stop = getMBBEndIdx(*PI).getPrevSlot();
VNInfo *PVNI = li->getVNInfoAt(Stop);
// A predecessor is not required to have a live-out value for a PHI.
if (PVNI) {
assert(PVNI->hasPHIKill() && "Missing hasPHIKill flag");
WorkList.push_back(std::make_pair(Stop, PVNI));
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
}
}
continue;
}
// VNI is live-in to MBB.
DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
NewLI.addRange(LiveRange(BlockStart, Idx.getNextSlot(), VNI));
// Make sure VNI is live-out from the predecessors.
for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
PE = MBB->pred_end(); PI != PE; ++PI) {
SlotIndex Stop = getMBBEndIdx(*PI).getPrevSlot();
assert(li->getVNInfoAt(Stop) == VNI && "Wrong value out of predecessor");
WorkList.push_back(std::make_pair(Stop, VNI));
}
}
// Handle dead values.
for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
I != E; ++I) {
VNInfo *VNI = *I;
if (VNI->isUnused())
continue;
LiveInterval::iterator LII = NewLI.FindLiveRangeContaining(VNI->def);
assert(LII != NewLI.end() && "Missing live range for PHI");
if (LII->end != VNI->def.getNextSlot())
continue;
// This is a dead PHI. Remove it.
VNI->setIsUnused(true);
NewLI.removeRange(*LII);
} else {
// This is a dead def. Make sure the instruction knows.
MachineInstr *MI = getInstructionFromIndex(VNI->def);
assert(MI && "No instruction defining live value");
MI->addRegisterDead(li->reg, tri_);
Jakob Stoklund Olesen
committed
if (dead && MI->allDefsAreDead()) {
DEBUG(dbgs() << "All defs dead: " << VNI->def << '\t' << *MI);
Jakob Stoklund Olesen
committed
dead->push_back(MI);
}
}
}
// Move the trimmed ranges back.
li->ranges.swap(NewLI.ranges);
DEBUG(dbgs() << "Shrunk: " << *li << '\n');
//===----------------------------------------------------------------------===//
// Register allocator hooks.
//
MachineBasicBlock::iterator
LiveIntervals::getLastSplitPoint(const LiveInterval &li,
Jakob Stoklund Olesen
committed
MachineBasicBlock *mbb) const {
const MachineBasicBlock *lpad = mbb->getLandingPadSuccessor();
// If li is not live into a landing pad, we can insert spill code before the
// first terminator.
if (!lpad || !isLiveInToMBB(li, lpad))
return mbb->getFirstTerminator();
// When there is a landing pad, spill code must go before the call instruction
// that can throw.
MachineBasicBlock::iterator I = mbb->end(), B = mbb->begin();
while (I != B) {
--I;
if (I->getDesc().isCall())
return I;
}
Jakob Stoklund Olesen
committed
// The block contains no calls that can throw, so use the first terminator.
return mbb->getFirstTerminator();
}
Jakob Stoklund Olesen
committed
void LiveIntervals::addKillFlags() {
for (iterator I = begin(), E = end(); I != E; ++I) {
unsigned Reg = I->first;
if (TargetRegisterInfo::isPhysicalRegister(Reg))
continue;
if (mri_->reg_nodbg_empty(Reg))
continue;
LiveInterval *LI = I->second;
// Every instruction that kills Reg corresponds to a live range end point.
for (LiveInterval::iterator RI = LI->begin(), RE = LI->end(); RI != RE;
++RI) {
// A LOAD index indicates an MBB edge.
if (RI->end.isLoad())
continue;
MachineInstr *MI = getInstructionFromIndex(RI->end);
if (!MI)
continue;
MI->addRegisterKilled(Reg, NULL);
}
}
}
Evan Cheng
committed
/// getReMatImplicitUse - If the remat definition MI has one (for now, we only
/// allow one) virtual register operand, then its uses are implicitly using
/// the register. Returns the virtual register.
unsigned LiveIntervals::getReMatImplicitUse(const LiveInterval &li,
MachineInstr *MI) const {
unsigned RegOp = 0;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || !MO.isUse())
Evan Cheng
committed
continue;
unsigned Reg = MO.getReg();
if (Reg == 0 || Reg == li.reg)
continue;
if (TargetRegisterInfo::isPhysicalRegister(Reg) &&
!allocatableRegs_[Reg])
continue;
Evan Cheng
committed
// FIXME: For now, only remat MI with at most one register operand.
assert(!RegOp &&
"Can't rematerialize instruction with multiple register operand!");
RegOp = MO.getReg();
Dan Gohman
committed
#ifndef NDEBUG
Evan Cheng
committed
break;
Dan Gohman
committed
#endif
Evan Cheng
committed
}
return RegOp;
}
/// isValNoAvailableAt - Return true if the val# of the specified interval
/// which reaches the given instruction also reaches the specified use index.
bool LiveIntervals::isValNoAvailableAt(const LiveInterval &li, MachineInstr *MI,
Jakob Stoklund Olesen
committed
VNInfo *UValNo = li.getVNInfoAt(UseIdx);
return UValNo && UValNo == li.getVNInfoAt(getInstructionIndex(MI));
Evan Cheng
committed
}
/// isReMaterializable - Returns true if the definition MI of the specified
/// val# of the specified interval is re-materializable.
bool
LiveIntervals::isReMaterializable(const LiveInterval &li,
const VNInfo *ValNo, MachineInstr *MI,
Jakob Stoklund Olesen
committed
const SmallVectorImpl<LiveInterval*> *SpillIs,
bool &isLoad) {
if (!tii_->isTriviallyReMaterializable(MI, aa_))
return false;
// Target-specific code can mark an instruction as being rematerializable
// if it has one virtual reg use, though it had better be something like
// a PIC base register which is likely to be live everywhere.
Dan Gohman
committed
unsigned ImpUse = getReMatImplicitUse(li, MI);
if (ImpUse) {
const LiveInterval &ImpLi = getInterval(ImpUse);
for (MachineRegisterInfo::use_nodbg_iterator
ri = mri_->use_nodbg_begin(li.reg), re = mri_->use_nodbg_end();
ri != re; ++ri) {
Dan Gohman
committed
MachineInstr *UseMI = &*ri;
Jakob Stoklund Olesen
committed
if (li.getVNInfoAt(UseIdx) != ValNo)
Dan Gohman
committed
continue;
if (!isValNoAvailableAt(ImpLi, MI, UseIdx))
return false;
}
// If a register operand of the re-materialized instruction is going to
// be spilled next, then it's not legal to re-materialize this instruction.
Jakob Stoklund Olesen
committed
if (SpillIs)
for (unsigned i = 0, e = SpillIs->size(); i != e; ++i)
if (ImpUse == (*SpillIs)[i]->reg)
return false;
Dan Gohman
committed
}
return true;
Evan Cheng
committed
}
Evan Cheng
committed
/// isReMaterializable - Returns true if the definition MI of the specified
/// val# of the specified interval is re-materializable.
bool LiveIntervals::isReMaterializable(const LiveInterval &li,
const VNInfo *ValNo, MachineInstr *MI) {
bool Dummy2;
Jakob Stoklund Olesen
committed
return isReMaterializable(li, ValNo, MI, 0, Dummy2);