Skip to content
MachineScheduler.cpp 48.2 KiB
Newer Older
Andrew Trick's avatar
Andrew Trick committed
//===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// MachineScheduler schedules machine instructions after phi elimination. It
// preserves LiveIntervals so it can be invoked before register allocation.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "misched"

#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineScheduler.h"
#include "llvm/CodeGen/Passes.h"
Andrew Trick's avatar
Andrew Trick committed
#include "llvm/CodeGen/RegisterClassInfo.h"
Andrew Trick's avatar
Andrew Trick committed
#include "llvm/CodeGen/RegisterPressure.h"
#include "llvm/CodeGen/ScheduleDAGInstrs.h"
#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/PriorityQueue.h"
using namespace llvm;

static cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
                                  cl::desc("Force top-down list scheduling"));
static cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
                                  cl::desc("Force bottom-up list scheduling"));

#ifndef NDEBUG
static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
  cl::desc("Pop up a window to show MISched dags after they are processed"));

static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
  cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
#else
static bool ViewMISchedDAGs = false;
#endif // NDEBUG

//===----------------------------------------------------------------------===//
// Machine Instruction Scheduling Pass and Registry
//===----------------------------------------------------------------------===//

MachineSchedContext::MachineSchedContext():
    MF(0), MLI(0), MDT(0), PassConfig(0), AA(0), LIS(0) {
  RegClassInfo = new RegisterClassInfo();
}

MachineSchedContext::~MachineSchedContext() {
  delete RegClassInfo;
}

/// MachineScheduler runs after coalescing and before register allocation.
class MachineScheduler : public MachineSchedContext,
                         public MachineFunctionPass {
  MachineScheduler();

  virtual void getAnalysisUsage(AnalysisUsage &AU) const;

  virtual void releaseMemory() {}

  virtual bool runOnMachineFunction(MachineFunction&);

  virtual void print(raw_ostream &O, const Module* = 0) const;

  static char ID; // Class identification, replacement for typeinfo
};
} // namespace

char MachineScheduler::ID = 0;
char &llvm::MachineSchedulerID = MachineScheduler::ID;
INITIALIZE_PASS_BEGIN(MachineScheduler, "misched",
                      "Machine Instruction Scheduler", false, false)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_END(MachineScheduler, "misched",
                    "Machine Instruction Scheduler", false, false)

MachineScheduler::MachineScheduler()
: MachineFunctionPass(ID) {
  initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesCFG();
  AU.addRequiredID(MachineDominatorsID);
  AU.addRequired<MachineLoopInfo>();
  AU.addRequired<AliasAnalysis>();
  AU.addRequired<TargetPassConfig>();
  AU.addRequired<SlotIndexes>();
  AU.addPreserved<SlotIndexes>();
  AU.addRequired<LiveIntervals>();
  AU.addPreserved<LiveIntervals>();
  MachineFunctionPass::getAnalysisUsage(AU);
}

MachinePassRegistry MachineSchedRegistry::Registry;

/// A dummy default scheduler factory indicates whether the scheduler
/// is overridden on the command line.
static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
  return 0;
}

/// MachineSchedOpt allows command line selection of the scheduler.
static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
               RegisterPassParser<MachineSchedRegistry> >
MachineSchedOpt("misched",
                cl::init(&useDefaultMachineSched), cl::Hidden,
                cl::desc("Machine instruction scheduler to use"));

DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
/// Forward declare the standard machine scheduler. This will be used as the
/// default scheduler if the target does not set a default.
static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C);

/// Decrement this iterator until reaching the top or a non-debug instr.
static MachineBasicBlock::iterator
priorNonDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Beg) {
  assert(I != Beg && "reached the top of the region, cannot decrement");
  while (--I != Beg) {
    if (!I->isDebugValue())
      break;
  }
  return I;
}

/// If this iterator is a debug value, increment until reaching the End or a
/// non-debug instruction.
static MachineBasicBlock::iterator
nextIfDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator End) {
  for(; I != End; ++I) {
    if (!I->isDebugValue())
      break;
  }
  return I;
}

Andrew Trick's avatar
Andrew Trick committed
/// Top-level MachineScheduler pass driver.
///
/// Visit blocks in function order. Divide each block into scheduling regions
/// and visit them bottom-up. Visiting regions bottom-up is not required, but is
/// consistent with the DAG builder, which traverses the interior of the
/// scheduling regions bottom-up.
Andrew Trick's avatar
Andrew Trick committed
///
/// This design avoids exposing scheduling boundaries to the DAG builder,
/// simplifying the DAG builder's support for "special" target instructions.
/// At the same time the design allows target schedulers to operate across
Andrew Trick's avatar
Andrew Trick committed
/// scheduling boundaries, for example to bundle the boudary instructions
/// without reordering them. This creates complexity, because the target
/// scheduler must update the RegionBegin and RegionEnd positions cached by
/// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
/// design would be to split blocks at scheduling boundaries, but LLVM has a
/// general bias against block splitting purely for implementation simplicity.
bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
  DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs()));

  // Initialize the context of the pass.
  MF = &mf;
  MLI = &getAnalysis<MachineLoopInfo>();
  MDT = &getAnalysis<MachineDominatorTree>();
  PassConfig = &getAnalysis<TargetPassConfig>();
  AA = &getAnalysis<AliasAnalysis>();

  LIS = &getAnalysis<LiveIntervals>();
  const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();

  RegClassInfo->runOnMachineFunction(*MF);
  // Select the scheduler, or set the default.
  MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
  if (Ctor == useDefaultMachineSched) {
    // Get the default scheduler set by the target.
    Ctor = MachineSchedRegistry::getDefault();
    if (!Ctor) {
      MachineSchedRegistry::setDefault(Ctor);
    }
  }
  // Instantiate the selected scheduler.
  OwningPtr<ScheduleDAGInstrs> Scheduler(Ctor(this));

  // Visit all machine basic blocks.
  //
  // TODO: Visit blocks in global postorder or postorder within the bottom-up
  // loop tree. Then we can optionally compute global RegPressure.
  for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
       MBB != MBBEnd; ++MBB) {

    Scheduler->startBlock(MBB);

    // Break the block into scheduling regions [I, RegionEnd), and schedule each
    // region as soon as it is discovered. RegionEnd points the the scheduling
    // boundary at the bottom of the region. The DAG does not include RegionEnd,
    // but the region does (i.e. the next RegionEnd is above the previous
    // RegionBegin). If the current block has no terminator then RegionEnd ==
    // MBB->end() for the bottom region.
    //
    // The Scheduler may insert instructions during either schedule() or
    // exitRegion(), even for empty regions. So the local iterators 'I' and
    // 'RegionEnd' are invalid across these calls.
    unsigned RemainingCount = MBB->size();
    for(MachineBasicBlock::iterator RegionEnd = MBB->end();
        RegionEnd != MBB->begin(); RegionEnd = Scheduler->begin()) {
      // Avoid decrementing RegionEnd for blocks with no terminator.
      if (RegionEnd != MBB->end()
          || TII->isSchedulingBoundary(llvm::prior(RegionEnd), MBB, *MF)) {
        --RegionEnd;
        // Count the boundary instruction.
        --RemainingCount;
      }

      // The next region starts above the previous region. Look backward in the
      // instruction stream until we find the nearest boundary.
      MachineBasicBlock::iterator I = RegionEnd;
      for(;I != MBB->begin(); --I, --RemainingCount) {
        if (TII->isSchedulingBoundary(llvm::prior(I), MBB, *MF))
          break;
      }
      // Notify the scheduler of the region, even if we may skip scheduling
      // it. Perhaps it still needs to be bundled.
      Scheduler->enterRegion(MBB, I, RegionEnd, RemainingCount);

      // Skip empty scheduling regions (0 or 1 schedulable instructions).
      if (I == RegionEnd || I == llvm::prior(RegionEnd)) {
        // Close the current region. Bundle the terminator if needed.
        // This invalidates 'RegionEnd' and 'I'.
        Scheduler->exitRegion();
        continue;
      }
      DEBUG(dbgs() << "********** MI Scheduling **********\n");
      DEBUG(dbgs() << MF->getFunction()->getName()
            << ":BB#" << MBB->getNumber() << "\n  From: " << *I << "    To: ";
            if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
            else dbgs() << "End";
            dbgs() << " Remaining: " << RemainingCount << "\n");

Andrew Trick's avatar
Andrew Trick committed
      // Schedule a region: possibly reorder instructions.
      // This invalidates 'RegionEnd' and 'I'.
      Scheduler->schedule();
Andrew Trick's avatar
Andrew Trick committed

      // Close the current region.
      Scheduler->exitRegion();

      // Scheduling has invalidated the current iterator 'I'. Ask the
      // scheduler for the top of it's scheduled region.
      RegionEnd = Scheduler->begin();
    }
    assert(RemainingCount == 0 && "Instruction count mismatch!");
    Scheduler->finishBlock();
  }
  Scheduler->finalizeSchedule();
  DEBUG(LIS->print(dbgs()));
  return true;
}

void MachineScheduler::print(raw_ostream &O, const Module* m) const {
  // unimplemented
}

//===----------------------------------------------------------------------===//
// MachineSchedStrategy - Interface to a machine scheduling algorithm.
//===----------------------------------------------------------------------===//

namespace {
class ScheduleDAGMI;

/// MachineSchedStrategy - Interface used by ScheduleDAGMI to drive the selected
/// scheduling algorithm.
///
/// If this works well and targets wish to reuse ScheduleDAGMI, we may expose it
/// in ScheduleDAGInstrs.h
class MachineSchedStrategy {
public:
  virtual ~MachineSchedStrategy() {}

  /// Initialize the strategy after building the DAG for a new region.
  virtual void initialize(ScheduleDAGMI *DAG) = 0;

  /// Pick the next node to schedule, or return NULL. Set IsTopNode to true to
  /// schedule the node at the top of the unscheduled region. Otherwise it will
  /// be scheduled at the bottom.
  virtual SUnit *pickNode(bool &IsTopNode) = 0;

  /// Notify MachineSchedStrategy that ScheduleDAGMI has scheduled a node.
  virtual void schedNode(SUnit *SU, bool IsTopNode) = 0;

  /// When all predecessor dependencies have been resolved, free this node for
  /// top-down scheduling.
  virtual void releaseTopNode(SUnit *SU) = 0;
  /// When all successor dependencies have been resolved, free this node for
  /// bottom-up scheduling.
  virtual void releaseBottomNode(SUnit *SU) = 0;
};
} // namespace

//===----------------------------------------------------------------------===//
// ScheduleDAGMI - Base class for MachineInstr scheduling with LiveIntervals
// preservation.
//===----------------------------------------------------------------------===//
/// ScheduleDAGMI is an implementation of ScheduleDAGInstrs that schedules
/// machine instructions while updating LiveIntervals.
class ScheduleDAGMI : public ScheduleDAGInstrs {
  /// Register pressure in this region computed by buildSchedGraph.
  IntervalPressure RegPressure;
  RegPressureTracker RPTracker;

  /// List of pressure sets that exceed the target's pressure limit before
  /// scheduling, listed in increasing set ID order. Each pressure set is paired
  /// with its max pressure in the currently scheduled regions.
  std::vector<PressureElement> RegionCriticalPSets;

  /// The top of the unscheduled zone.
  MachineBasicBlock::iterator CurrentTop;
  IntervalPressure TopPressure;
  RegPressureTracker TopRPTracker;

  /// The bottom of the unscheduled zone.
  MachineBasicBlock::iterator CurrentBottom;
  IntervalPressure BotPressure;
  RegPressureTracker BotRPTracker;
  /// The number of instructions scheduled so far. Used to cut off the
  /// scheduler at the point determined by misched-cutoff.
  unsigned NumInstrsScheduled;
  ScheduleDAGMI(MachineSchedContext *C, MachineSchedStrategy *S):
    ScheduleDAGInstrs(*C->MF, *C->MLI, *C->MDT, /*IsPostRA=*/false, C->LIS),
    AA(C->AA), RegClassInfo(C->RegClassInfo), SchedImpl(S),
    RPTracker(RegPressure), CurrentTop(), TopRPTracker(TopPressure),
    CurrentBottom(), BotRPTracker(BotPressure) {
#ifndef NDEBUG
    NumInstrsScheduled = 0;
#endif
  }
  MachineBasicBlock::iterator top() const { return CurrentTop; }
  MachineBasicBlock::iterator bottom() const { return CurrentBottom; }
  /// Implement the ScheduleDAGInstrs interface for handling the next scheduling
  /// region. This covers all instructions in a block, while schedule() may only
  /// cover a subset.
  void enterRegion(MachineBasicBlock *bb,
                   MachineBasicBlock::iterator begin,
                   MachineBasicBlock::iterator end,
                   unsigned endcount);

  /// Implement ScheduleDAGInstrs interface for scheduling a sequence of
  /// reorderable instructions.
  /// Get current register pressure for the top scheduled instructions.
  const IntervalPressure &getTopPressure() const { return TopPressure; }
  const RegPressureTracker &getTopRPTracker() const { return TopRPTracker; }

  /// Get current register pressure for the bottom scheduled instructions.
  const IntervalPressure &getBotPressure() const { return BotPressure; }
  const RegPressureTracker &getBotRPTracker() const { return BotRPTracker; }

  /// Get register pressure for the entire scheduling region before scheduling.
  const IntervalPressure &getRegPressure() const { return RegPressure; }

  const std::vector<PressureElement> &getRegionCriticalPSets() const {
    return RegionCriticalPSets;
  }

  /// getIssueWidth - Return the max instructions per scheduling group.
  unsigned getIssueWidth() const {
    return InstrItins ? InstrItins->Props.IssueWidth : 1;
  }

  /// getNumMicroOps - Return the number of issue slots required for this MI.
  unsigned getNumMicroOps(MachineInstr *MI) const {
    int UOps = InstrItins->getNumMicroOps(MI->getDesc().getSchedClass());
    return (UOps >= 0) ? UOps : TII->getNumMicroOps(InstrItins, MI);
  }

  void updateScheduledPressure(std::vector<unsigned> NewMaxPressure);
  void moveInstruction(MachineInstr *MI, MachineBasicBlock::iterator InsertPos);
Andrew Trick's avatar
Andrew Trick committed
  bool checkSchedLimit();
  void releaseSucc(SUnit *SU, SDep *SuccEdge);
  void releaseSuccessors(SUnit *SU);
  void releasePred(SUnit *SU, SDep *PredEdge);
  void releasePredecessors(SUnit *SU);
/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
/// NumPredsLeft reaches zero, release the successor node.
///
/// FIXME: Adjust SuccSU height based on MinLatency.
void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
  SUnit *SuccSU = SuccEdge->getSUnit();

#ifndef NDEBUG
  if (SuccSU->NumPredsLeft == 0) {
    dbgs() << "*** Scheduling failed! ***\n";
    SuccSU->dump(this);
    dbgs() << " has been released too many times!\n";
    llvm_unreachable(0);
  }
#endif
  --SuccSU->NumPredsLeft;
  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
    SchedImpl->releaseTopNode(SuccSU);
}

/// releaseSuccessors - Call releaseSucc on each of SU's successors.
void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
       I != E; ++I) {
    releaseSucc(SU, &*I);
  }
}

/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
/// NumSuccsLeft reaches zero, release the predecessor node.
///
/// FIXME: Adjust PredSU height based on MinLatency.
void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
  SUnit *PredSU = PredEdge->getSUnit();

#ifndef NDEBUG
  if (PredSU->NumSuccsLeft == 0) {
    dbgs() << "*** Scheduling failed! ***\n";
    PredSU->dump(this);
    dbgs() << " has been released too many times!\n";
    llvm_unreachable(0);
  }
#endif
  --PredSU->NumSuccsLeft;
  if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
    SchedImpl->releaseBottomNode(PredSU);
}

/// releasePredecessors - Call releasePred on each of SU's predecessors.
void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
       I != E; ++I) {
    releasePred(SU, &*I);
  }
}

void ScheduleDAGMI::moveInstruction(MachineInstr *MI,
                                    MachineBasicBlock::iterator InsertPos) {
  // Advance RegionBegin if the first instruction moves down.
  if (&*RegionBegin == MI)
    ++RegionBegin;

  // Update the instruction stream.

  // Update LiveIntervals

  // Recede RegionBegin if an instruction moves above the first.
  if (RegionBegin == InsertPos)
    RegionBegin = MI;
}

Andrew Trick's avatar
Andrew Trick committed
bool ScheduleDAGMI::checkSchedLimit() {
#ifndef NDEBUG
  if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
    CurrentTop = CurrentBottom;
    return false;
  }
  ++NumInstrsScheduled;
#endif
  return true;
}

/// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
/// crossing a scheduling boundary. [begin, end) includes all instructions in
/// the region, including the boundary itself and single-instruction regions
/// that don't get scheduled.
void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
                                MachineBasicBlock::iterator begin,
                                MachineBasicBlock::iterator end,
                                unsigned endcount)
{
  ScheduleDAGInstrs::enterRegion(bb, begin, end, endcount);

  // For convenience remember the end of the liveness region.
  LiveRegionEnd =
    (RegionEnd == bb->end()) ? RegionEnd : llvm::next(RegionEnd);
}

// Setup the register pressure trackers for the top scheduled top and bottom
// scheduled regions.
void ScheduleDAGMI::initRegPressure() {
  TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin);
  BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);

  // Close the RPTracker to finalize live ins.
  RPTracker.closeRegion();

  DEBUG(RPTracker.getPressure().dump(TRI));

  // Initialize the live ins and live outs.
  TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
  BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);

  // Close one end of the tracker so we can call
  // getMaxUpward/DownwardPressureDelta before advancing across any
  // instructions. This converts currently live regs into live ins/outs.
  TopRPTracker.closeTop();
  BotRPTracker.closeBottom();

  // Account for liveness generated by the region boundary.
  if (LiveRegionEnd != RegionEnd)
    BotRPTracker.recede();

  assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");

  // Cache the list of excess pressure sets in this region. This will also track
  // the max pressure in the scheduled code for these sets.
  RegionCriticalPSets.clear();
  std::vector<unsigned> RegionPressure = RPTracker.getPressure().MaxSetPressure;
  for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
    unsigned Limit = TRI->getRegPressureSetLimit(i);
    if (RegionPressure[i] > Limit)
      RegionCriticalPSets.push_back(PressureElement(i, 0));
  }
  DEBUG(dbgs() << "Excess PSets: ";
        for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
          dbgs() << TRI->getRegPressureSetName(
            RegionCriticalPSets[i].PSetID) << " ";
        dbgs() << "\n");
}

// FIXME: When the pressure tracker deals in pressure differences then we won't
// iterate over all RegionCriticalPSets[i].
void ScheduleDAGMI::
updateScheduledPressure(std::vector<unsigned> NewMaxPressure) {
  for (unsigned i = 0, e = RegionCriticalPSets.size(); i < e; ++i) {
    unsigned ID = RegionCriticalPSets[i].PSetID;
    int &MaxUnits = RegionCriticalPSets[i].UnitIncrease;
    if ((int)NewMaxPressure[ID] > MaxUnits)
      MaxUnits = NewMaxPressure[ID];
  }
// Release all DAG roots for scheduling.
void ScheduleDAGMI::releaseRoots() {
  SmallVector<SUnit*, 16> BotRoots;

  for (std::vector<SUnit>::iterator
         I = SUnits.begin(), E = SUnits.end(); I != E; ++I) {
    // A SUnit is ready to top schedule if it has no predecessors.
    if (I->Preds.empty())
      SchedImpl->releaseTopNode(&(*I));
    // A SUnit is ready to bottom schedule if it has no successors.
    if (I->Succs.empty())
      BotRoots.push_back(&(*I));
  }
  // Release bottom roots in reverse order so the higher priority nodes appear
  // first. This is more natural and slightly more efficient.
  for (SmallVectorImpl<SUnit*>::const_reverse_iterator
         I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I)
    SchedImpl->releaseBottomNode(*I);
}

/// schedule - Called back from MachineScheduler::runOnMachineFunction
/// after setting up the current scheduling region. [RegionBegin, RegionEnd)
/// only includes instructions that have DAG nodes, not scheduling boundaries.
  // Initialize the register pressure tracker used by buildSchedGraph.
  RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);

  // Account for liveness generate by the region boundary.
  if (LiveRegionEnd != RegionEnd)
    RPTracker.recede();
  // Build the DAG, and compute current register pressure.
  // Initialize top/bottom trackers after computing region pressure.
  initRegPressure();

  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
          SUnits[su].dumpAll(this));

  if (ViewMISchedDAGs) viewGraph();

  SchedImpl->initialize(this);

  // Release edges from the special Entry node or to the special Exit node.
  CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
  CurrentBottom = RegionEnd;
  bool IsTopNode = false;
  while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
Andrew Trick's avatar
Andrew Trick committed
    if (!checkSchedLimit())
      break;

    // Move the instruction to its new location in the instruction stream.
    MachineInstr *MI = SU->getInstr();

    if (IsTopNode) {
      assert(SU->isTopReady() && "node still has unscheduled dependencies");
      if (&*CurrentTop == MI)
        CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
        TopRPTracker.setPos(MI);
      }

      // Update top scheduled pressure.
      TopRPTracker.advance();
      assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
      updateScheduledPressure(TopRPTracker.getPressure().MaxSetPressure);
      // Release dependent instructions for scheduling.
      releaseSuccessors(SU);
    }
      assert(SU->isBottomReady() && "node still has unscheduled dependencies");
      MachineBasicBlock::iterator priorII =
        priorNonDebug(CurrentBottom, CurrentTop);
      if (&*priorII == MI)
        CurrentBottom = priorII;
        if (&*CurrentTop == MI) {
          CurrentTop = nextIfDebug(++CurrentTop, priorII);
          TopRPTracker.setPos(CurrentTop);
        }
        moveInstruction(MI, CurrentBottom);
        CurrentBottom = MI;
      }
      // Update bottom scheduled pressure.
      BotRPTracker.recede();
      assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
      updateScheduledPressure(BotRPTracker.getPressure().MaxSetPressure);
      // Release dependent instructions for scheduling.
      releasePredecessors(SU);
    SchedImpl->schedNode(SU, IsTopNode);
  assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");

  placeDebugValues();
}

/// Reinsert any remaining debug_values, just like the PostRA scheduler.
void ScheduleDAGMI::placeDebugValues() {
  // If first instruction was a DBG_VALUE then put it back.
  if (FirstDbgValue) {
    BB->splice(RegionBegin, BB, FirstDbgValue);
    RegionBegin = FirstDbgValue;
  }

  for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
         DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
    std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
    MachineInstr *DbgValue = P.first;
    MachineBasicBlock::iterator OrigPrevMI = P.second;
    BB->splice(++OrigPrevMI, BB, DbgValue);
    if (OrigPrevMI == llvm::prior(RegionEnd))
      RegionEnd = DbgValue;
  }
  DbgValues.clear();
  FirstDbgValue = NULL;
//===----------------------------------------------------------------------===//
// ConvergingScheduler - Implementation of the standard MachineSchedStrategy.
//===----------------------------------------------------------------------===//

namespace {
/// ReadyQueue encapsulates vector of "ready" SUnits with basic convenience
/// methods for pushing and removing nodes. ReadyQueue's are uniquely identified
/// by an ID. SUnit::NodeQueueId is a mask of the ReadyQueues the SUnit is in.
class ReadyQueue {
  std::string Name;
public:
  ReadyQueue(unsigned id, const Twine &name): ID(id), Name(name.str()) {}

  unsigned getID() const { return ID; }
  StringRef getName() const { return Name; }

  // SU is in this queue if it's NodeQueueID is a superset of this ID.
  bool isInQueue(SUnit *SU) const { return (SU->NodeQueueId & ID); }

  bool empty() const { return Queue.empty(); }

  unsigned size() const { return Queue.size(); }

  typedef std::vector<SUnit*>::iterator iterator;

  iterator begin() { return Queue.begin(); }

  iterator end() { return Queue.end(); }

  iterator find(SUnit *SU) {
    return std::find(Queue.begin(), Queue.end(), SU);
  }

  void push(SUnit *SU) {
    Queue.push_back(SU);
  void dump() {
Andrew Trick's avatar
Andrew Trick committed
    dbgs() << Name << ": ";
    for (unsigned i = 0, e = Queue.size(); i < e; ++i)
      dbgs() << Queue[i]->NodeNum << " ";
    dbgs() << "\n";
  }
/// ConvergingScheduler shrinks the unscheduled zone using heuristics to balance
/// the schedule.
class ConvergingScheduler : public MachineSchedStrategy {

  /// Store the state used by ConvergingScheduler heuristics, required for the
  /// lifetime of one invocation of pickNode().
  struct SchedCandidate {
    // The best SUnit candidate.
    SUnit *SU;

    // Register pressure values for the best candidate.
    RegPressureDelta RPDelta;

    SchedCandidate(): SU(NULL) {}
  };
  /// Represent the type of SchedCandidate found within a single queue.
  enum CandResult {
    NoCand, NodeOrder, SingleExcess, SingleCritical, SingleMax, MultiPressure };
  /// Each Scheduling boundary is associated with ready queues. It tracks the
  /// current cycle in whichever direction at has moved, and maintains the state
  /// of "hazards" and other interlocks at the current cycle.
  struct SchedBoundary {
    ReadyQueue Available;
    ReadyQueue Pending;
    bool CheckPending;

    ScheduleHazardRecognizer *HazardRec;

    unsigned CurrCycle;
    unsigned IssueCount;

    /// MinReadyCycle - Cycle of the soonest available instruction.
    unsigned MinReadyCycle;

    // Remember the greatest min operand latency.
    unsigned MaxMinLatency;

    /// Pending queues extend the ready queues with the same ID and the
    /// PendingFlag set.
    SchedBoundary(unsigned ID, const Twine &Name):
      DAG(0), Available(ID, Name+".A"),
      Pending(ID << ConvergingScheduler::LogMaxQID, Name+".P"),
      CheckPending(false), HazardRec(0), CurrCycle(0), IssueCount(0),
      MinReadyCycle(UINT_MAX), MaxMinLatency(0) {}

    ~SchedBoundary() { delete HazardRec; }

    bool isTop() const {
      return Available.getID() == ConvergingScheduler::TopQID;
    }
    void releaseNode(SUnit *SU, unsigned ReadyCycle);

    void bumpCycle();

    void bumpNode(SUnit *SU);
    void releasePending();

    void removeReady(SUnit *SU);

    SUnit *pickOnlyChoice();
  };

  const TargetRegisterInfo *TRI;
  // State of the top and bottom scheduled instruction boundaries.
  SchedBoundary Top;
  SchedBoundary Bot;
  /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both)
    BotQID = 2,
    LogMaxQID = 2
  ConvergingScheduler():
    DAG(0), TRI(0), Top(TopQID, "TopQ"), Bot(BotQID, "BotQ") {}
  virtual void initialize(ScheduleDAGMI *dag);
  virtual SUnit *pickNode(bool &IsTopNode);
  virtual void schedNode(SUnit *SU, bool IsTopNode);

  virtual void releaseTopNode(SUnit *SU);

  virtual void releaseBottomNode(SUnit *SU);

  SUnit *pickNodeBidrectional(bool &IsTopNode);

  CandResult pickNodeFromQueue(ReadyQueue &Q,
                               const RegPressureTracker &RPTracker,
                               SchedCandidate &Candidate);
  void traceCandidate(const char *Label, const ReadyQueue &Q, SUnit *SU,
                      PressureElement P = PressureElement());
void ConvergingScheduler::initialize(ScheduleDAGMI *dag) {
  DAG = dag;
  TRI = DAG->TRI;
  Top.DAG = dag;
  Bot.DAG = dag;

  // Initialize the HazardRecognizers.
  const TargetMachine &TM = DAG->MF.getTarget();
  const InstrItineraryData *Itin = TM.getInstrItineraryData();
  Top.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
  Bot.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);

  assert((!ForceTopDown || !ForceBottomUp) &&
         "-misched-topdown incompatible with -misched-bottomup");
}

void ConvergingScheduler::releaseTopNode(SUnit *SU) {
  if (SU->isScheduled)
    return;

  for (SUnit::succ_iterator I = SU->Preds.begin(), E = SU->Preds.end();
       I != E; ++I) {
    unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle;
    unsigned Latency =
      DAG->computeOperandLatency(I->getSUnit(), SU, *I, /*FindMin=*/true);
#ifndef NDEBUG
    Top.MaxMinLatency = std::max(Latency, Top.MaxMinLatency);
#endif
    if (SU->TopReadyCycle < PredReadyCycle + Latency)
      SU->TopReadyCycle = PredReadyCycle + Latency;
  }
  Top.releaseNode(SU, SU->TopReadyCycle);
}

void ConvergingScheduler::releaseBottomNode(SUnit *SU) {
  if (SU->isScheduled)
    return;

  assert(SU->getInstr() && "Scheduled SUnit must have instr");

  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
       I != E; ++I) {
    unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle;
    unsigned Latency =
      DAG->computeOperandLatency(SU, I->getSUnit(), *I, /*FindMin=*/true);
#ifndef NDEBUG
    Bot.MaxMinLatency = std::max(Latency, Bot.MaxMinLatency);
#endif
    if (SU->BotReadyCycle < SuccReadyCycle + Latency)
      SU->BotReadyCycle = SuccReadyCycle + Latency;
  }
  Bot.releaseNode(SU, SU->BotReadyCycle);
/// Does this SU have a hazard within the current instruction group.
///
/// The scheduler supports two modes of hazard recognition. The first is the
/// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
/// supports highly complicated in-order reservation tables
/// (ScoreboardHazardRecognizer) and arbitraty target-specific logic.
///
/// The second is a streamlined mechanism that checks for hazards based on
/// simple counters that the scheduler itself maintains. It explicitly checks
/// for instruction dispatch limitations, including the number of micro-ops that
/// can dispatch per cycle.
///
/// TODO: Also check whether the SU must start a new group.
bool ConvergingScheduler::SchedBoundary::checkHazard(SUnit *SU) {
  if (HazardRec->isEnabled())
    return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard;

  if (IssueCount + DAG->getNumMicroOps(SU->getInstr()) > DAG->getIssueWidth())
    return true;

  return false;
}

void ConvergingScheduler::SchedBoundary::releaseNode(SUnit *SU,
                                                     unsigned ReadyCycle) {
  if (ReadyCycle < MinReadyCycle)
    MinReadyCycle = ReadyCycle;

  // Check for interlocks first. For the purpose of other heuristics, an
  // instruction that cannot issue appears as if it's not in the ReadyQueue.
  if (ReadyCycle > CurrCycle || checkHazard(SU))
    Pending.push(SU);
  else
    Available.push(SU);
}

/// Move the boundary of scheduled code by one cycle.
void ConvergingScheduler::SchedBoundary::bumpCycle() {
  unsigned Width = DAG->getIssueWidth();
  IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width;

  assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
  unsigned NextCycle = std::max(CurrCycle + 1, MinReadyCycle);

  if (!HazardRec->isEnabled()) {
    // Bypass HazardRec virtual calls.
    CurrCycle = NextCycle;
  }
  else {
    // Bypass getHazardType calls in case of long latency.
    for (; CurrCycle != NextCycle; ++CurrCycle) {
      if (isTop())
        HazardRec->AdvanceCycle();
      else
        HazardRec->RecedeCycle();
    }
  }
  CheckPending = true;

  DEBUG(dbgs() << "*** " << Available.getName() << " cycle "
        << CurrCycle << '\n');
}

/// Move the boundary of scheduled code by one SUnit.