Skip to content
GRConstants.cpp 49.5 KiB
Newer Older
  NodeSet Dst;
  StateCleaned = false;

  Visit(S, StmtEntryNode, Dst);

  // If no nodes were generated, generate a new node that has all the
  // dead mappings removed.
  if (Dst.size() == 1 && *Dst.begin() == StmtEntryNode) {
    StateTy St = RemoveDeadBindings(S, StmtEntryNode->getState());
    builder.generateNode(S, St, StmtEntryNode);
  }
  CurrentStmt = NULL;
  StmtEntryNode = NULL;
  Builder = NULL;
RValue GRConstants::GetValue(const StateTy& St, const LValue& LV) {
  switch (LV.getSubKind()) {
    case LValueDeclKind: {
      StateTy::TreeTy* T = St.SlimFind(cast<LValueDecl>(LV).getDecl()); 
      return T ? T->getValue().second : InvalidValue();
    }
    default:
      assert (false && "Invalid LValue.");
RValue GRConstants::GetValue(const StateTy& St, Stmt* S) {
  for (;;) {
    switch (S->getStmtClass()) {
        
      // ParenExprs are no-ops.
        
      case Stmt::ParenExprClass:
        S = cast<ParenExpr>(S)->getSubExpr();
        continue;
        
      // DeclRefExprs can either evaluate to an LValue or a Non-LValue
      // (assuming an implicit "load") depending on the context.  In this
      // context we assume that we are retrieving the value contained
      // within the referenced variables.
        
      case Stmt::DeclRefExprClass:
        return GetValue(St, LValueDecl(cast<DeclRefExpr>(S)->getDecl()));
      // Integer literals evaluate to an RValue.  Simply retrieve the
      // RValue for the literal.
        
      case Stmt::IntegerLiteralClass:
        return NonLValue::GetValue(ValMgr, cast<IntegerLiteral>(S));
              
      // Casts where the source and target type are the same
      // are no-ops.  We blast through these to get the descendant
      // subexpression that has a value.
        
      case Stmt::ImplicitCastExprClass: {
        ImplicitCastExpr* C = cast<ImplicitCastExpr>(S);
        if (C->getType() == C->getSubExpr()->getType()) {
          S = C->getSubExpr();
          continue;
        }
        break;
      }
      case Stmt::CastExprClass: {
        CastExpr* C = cast<CastExpr>(S);
        if (C->getType() == C->getSubExpr()->getType()) {
          S = C->getSubExpr();
          continue;
        }
        break;
      }
      // Handle all other Stmt* using a lookup.

  StateTy::TreeTy* T = St.SlimFind(S);
  return T ? T->getValue().second : InvalidValue();
LValue GRConstants::GetLValue(const StateTy& St, Stmt* S) {
  while (ParenExpr* P = dyn_cast<ParenExpr>(S))
    S = P->getSubExpr();
  
  if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(S))
    return LValueDecl(DR->getDecl());
    
  return cast<LValue>(GetValue(St, S));
GRConstants::StateTy GRConstants::SetValue(StateTy St, Stmt* S,
                                           const RValue& V) {
  
  if (!StateCleaned) {
    St = RemoveDeadBindings(CurrentStmt, St);
    StateCleaned = true;
  }
  
  bool isBlkExpr = false;
  
  if (S == CurrentStmt) {
    isBlkExpr = getCFG().isBlkExpr(S);

    if (!isBlkExpr)
      return St;
  }
  return V.isValid() ? StateMgr.Add(St, ValueKey(S,isBlkExpr), V)
                     : St;
GRConstants::StateTy GRConstants::SetValue(StateTy St, const LValue& LV,
                                           const RValue& V) {
  if (!LV.isValid())
    return St;
  
  if (!StateCleaned) {
    St = RemoveDeadBindings(CurrentStmt, St);
    StateCleaned = true;
  }

  switch (LV.getSubKind()) {
    case LValueDeclKind:        
      return V.isValid() ? StateMgr.Add(St, cast<LValueDecl>(LV).getDecl(), V)
                         : StateMgr.Remove(St, cast<LValueDecl>(LV).getDecl());
      
    default:
      assert ("SetValue for given LValue type not yet implemented.");
      return St;
  }
GRConstants::StateTy GRConstants::RemoveDeadBindings(Stmt* Loc, StateTy M) {
  // Note: in the code below, we can assign a new map to M since the
  //  iterators are iterating over the tree of the *original* map.
  StateTy::iterator I = M.begin(), E = M.end();


  for (; I!=E && !I.getKey().isSymbol(); ++I) {
    // Remove old bindings for subexpressions and "dead" 
    // block-level expressions.    
    if (I.getKey().isSubExpr() ||
        I.getKey().isBlkExpr() && !Liveness.isLive(Loc,cast<Stmt>(I.getKey()))){
      M = StateMgr.Remove(M, I.getKey());
    }
    else if (I.getKey().isDecl()) { // Remove bindings for "dead" decls.
      if (VarDecl* V = dyn_cast<VarDecl>(cast<ValueDecl>(I.getKey())))
        if (!Liveness.isLive(Loc, V))
          M = StateMgr.Remove(M, I.getKey());
    }
void GRConstants::Nodify(NodeSet& Dst, Stmt* S, GRConstants::NodeTy* Pred, 
                         GRConstants::StateTy St) {
 
  // If the state hasn't changed, don't generate a new node.
  if (St == Pred->getState())
    return;
  Dst.Add(Builder->generateNode(S, St, Pred));
void GRConstants::VisitCast(Expr* CastE, Expr* E, GRConstants::NodeTy* Pred,
                            GRConstants::NodeSet& Dst) {
  
  QualType T = CastE->getType();

  // Check for redundant casts.
  if (E->getType() == T) {
    Dst.Add(Pred);
    return;
  }
  
  NodeSet S1;
  Visit(E, Pred, S1);
  
  for (NodeSet::iterator I1=S1.begin(), E1=S1.end(); I1 != E1; ++I1) {
    NodeTy* N = *I1;
    StateTy St = N->getState();
    const RValue& V = GetValue(St, E);
    Nodify(Dst, CastE, N, SetValue(St, CastE, V.Cast(ValMgr, CastE)));
}

void GRConstants::VisitDeclStmt(DeclStmt* DS, GRConstants::NodeTy* Pred,
                                GRConstants::NodeSet& Dst) {
  
  StateTy St = Pred->getState();
  
  for (const ScopedDecl* D = DS->getDecl(); D; D = D->getNextDeclarator())
    if (const VarDecl* VD = dyn_cast<VarDecl>(D)) {
      const Expr* E = VD->getInit();      
      St = SetValue(St, LValueDecl(VD),
                    E ? GetValue(St, E) : UninitializedValue());
    }

  Nodify(Dst, DS, Pred, St);
  
  if (Dst.empty())
    Dst.Add(Pred);  
}
void GRConstants::VisitUnaryOperator(UnaryOperator* U,
                                     GRConstants::NodeTy* Pred,
                                     GRConstants::NodeSet& Dst) {
  NodeSet S1;
  Visit(U->getSubExpr(), Pred, S1);
    
  for (NodeSet::iterator I1=S1.begin(), E1=S1.end(); I1 != E1; ++I1) {
    NodeTy* N1 = *I1;
    StateTy St = N1->getState();
    
    switch (U->getOpcode()) {
      case UnaryOperator::PostInc: {
        const LValue& L1 = GetLValue(St, U->getSubExpr());
        NonLValue R1 = cast<NonLValue>(GetValue(St, L1));
        NonLValue R2 = NonLValue::GetValue(ValMgr, 1U, U->getType(),
                                           U->getLocStart());
        NonLValue Result = R1.Add(ValMgr, R2);
        Nodify(Dst, U, N1, SetValue(SetValue(St, U, R1), L1, Result));
        break;
      }
        
      case UnaryOperator::PostDec: {
        const LValue& L1 = GetLValue(St, U->getSubExpr());
        NonLValue R1 = cast<NonLValue>(GetValue(St, L1));
        NonLValue R2 = NonLValue::GetValue(ValMgr, 1U, U->getType(),
                                           U->getLocStart());
        NonLValue Result = R1.Sub(ValMgr, R2);
        Nodify(Dst, U, N1, SetValue(SetValue(St, U, R1), L1, Result));
        break;
      }
        
      case UnaryOperator::PreInc: {
        const LValue& L1 = GetLValue(St, U->getSubExpr());
        NonLValue R1 = cast<NonLValue>(GetValue(St, L1));
        NonLValue R2 = NonLValue::GetValue(ValMgr, 1U, U->getType(),
                                           U->getLocStart());        
        NonLValue Result = R1.Add(ValMgr, R2);
        Nodify(Dst, U, N1, SetValue(SetValue(St, U, Result), L1, Result));
        break;
      }
        
      case UnaryOperator::PreDec: {
        const LValue& L1 = GetLValue(St, U->getSubExpr());
        NonLValue R1 = cast<NonLValue>(GetValue(St, L1));
        NonLValue R2 = NonLValue::GetValue(ValMgr, 1U, U->getType(),
                                           U->getLocStart());
        NonLValue Result = R1.Sub(ValMgr, R2);
        Nodify(Dst, U, N1, SetValue(SetValue(St, U, Result), L1, Result));
        break;
      }
        
      case UnaryOperator::Minus: {
        const NonLValue& R1 = cast<NonLValue>(GetValue(St, U->getSubExpr()));
        Nodify(Dst, U, N1, SetValue(St, U, R1.UnaryMinus(ValMgr, U)));
      case UnaryOperator::AddrOf: {
        const LValue& L1 = GetLValue(St, U->getSubExpr());
        Nodify(Dst, U, N1, SetValue(St, U, L1));
        break;
      }
        
      case UnaryOperator::Deref: {
        const LValue& L1 = GetLValue(St, U->getSubExpr());
        Nodify(Dst, U, N1, SetValue(St, U, GetValue(St, L1)));
        break;
      }
        
void GRConstants::VisitBinaryOperator(BinaryOperator* B,
                                      GRConstants::NodeTy* Pred,
                                      GRConstants::NodeSet& Dst) {
  NodeSet S1;
  Visit(B->getLHS(), Pred, S1);
  for (NodeSet::iterator I1=S1.begin(), E1=S1.end(); I1 != E1; ++I1) {
    NodeTy* N1 = *I1;
    // When getting the value for the LHS, check if we are in an assignment.
    // In such cases, we want to (initially) treat the LHS as an LValue,
    // so we use GetLValue instead of GetValue so that DeclRefExpr's are
    // evaluated to LValueDecl's instead of to an NonLValue.
    const RValue& V1 = 
      B->isAssignmentOp() ? GetLValue(N1->getState(), B->getLHS())
                          : GetValue(N1->getState(), B->getLHS());
    NodeSet S2;
    Visit(B->getRHS(), N1, S2);
  
    for (NodeSet::iterator I2=S2.begin(), E2=S2.end(); I2 != E2; ++I2) {
      NodeTy* N2 = *I2;
      StateTy St = N2->getState();
      const RValue& V2 = GetValue(St, B->getRHS());
        default: 
          Dst.Add(N2);
          break;
          
        // Arithmetic opreators.
          
          const NonLValue& R1 = cast<NonLValue>(V1);
          const NonLValue& R2 = cast<NonLValue>(V2);
          Nodify(Dst, B, N2, SetValue(St, B, R1.Add(ValMgr, R2)));
          const NonLValue& R1 = cast<NonLValue>(V1);
          const NonLValue& R2 = cast<NonLValue>(V2);
	        Nodify(Dst, B, N2, SetValue(St, B, R1.Sub(ValMgr, R2)));
        case BinaryOperator::Mul: {
          const NonLValue& R1 = cast<NonLValue>(V1);
          const NonLValue& R2 = cast<NonLValue>(V2);
	        Nodify(Dst, B, N2, SetValue(St, B, R1.Mul(ValMgr, R2)));
        case BinaryOperator::Div: {
          const NonLValue& R1 = cast<NonLValue>(V1);
          const NonLValue& R2 = cast<NonLValue>(V2);
	        Nodify(Dst, B, N2, SetValue(St, B, R1.Div(ValMgr, R2)));
        case BinaryOperator::Rem: {
          const NonLValue& R1 = cast<NonLValue>(V1);
          const NonLValue& R2 = cast<NonLValue>(V2);
	        Nodify(Dst, B, N2, SetValue(St, B, R1.Rem(ValMgr, R2)));
          break;
        }
          
        case BinaryOperator::Assign: {
          const LValue& L1 = cast<LValue>(V1);
          const NonLValue& R2 = cast<NonLValue>(V2);
          Nodify(Dst, B, N2, SetValue(SetValue(St, B, R2), L1, R2));
          break;
        }
          
        case BinaryOperator::AddAssign: {
          const LValue& L1 = cast<LValue>(V1);
          NonLValue R1 = cast<NonLValue>(GetValue(N1->getState(), L1));
          NonLValue Result = R1.Add(ValMgr, cast<NonLValue>(V2));
          Nodify(Dst, B, N2, SetValue(SetValue(St, B, Result), L1, Result));
          break;
        }
          
        case BinaryOperator::SubAssign: {
          const LValue& L1 = cast<LValue>(V1);
          NonLValue R1 = cast<NonLValue>(GetValue(N1->getState(), L1));
          NonLValue Result = R1.Sub(ValMgr, cast<NonLValue>(V2));
          Nodify(Dst, B, N2, SetValue(SetValue(St, B, Result), L1, Result));
          break;
        }
          
        case BinaryOperator::MulAssign: {
          const LValue& L1 = cast<LValue>(V1);
          NonLValue R1 = cast<NonLValue>(GetValue(N1->getState(), L1));
          NonLValue Result = R1.Mul(ValMgr, cast<NonLValue>(V2));
          Nodify(Dst, B, N2, SetValue(SetValue(St, B, Result), L1, Result));
          break;
        }
          
        case BinaryOperator::DivAssign: {
          const LValue& L1 = cast<LValue>(V1);
          NonLValue R1 = cast<NonLValue>(GetValue(N1->getState(), L1));
          NonLValue Result = R1.Div(ValMgr, cast<NonLValue>(V2));
          Nodify(Dst, B, N2, SetValue(SetValue(St, B, Result), L1, Result));
          break;
        }
          
        case BinaryOperator::RemAssign: {
          const LValue& L1 = cast<LValue>(V1);
          NonLValue R1 = cast<NonLValue>(GetValue(N1->getState(), L1));
          NonLValue Result = R1.Rem(ValMgr, cast<NonLValue>(V2));
          Nodify(Dst, B, N2, SetValue(SetValue(St, B, Result), L1, Result));
          break;
        }
          
        // Equality operators.

        case BinaryOperator::EQ:
          // FIXME: should we allow XX.EQ() to return a set of values,
          //  allowing state bifurcation?  In such cases, they will also
          //  modify the state (meaning that a new state will be returned
          //  as well).
          assert (B->getType() == getContext().IntTy);
          
          if (isa<LValue>(V1)) {
            const LValue& L1 = cast<LValue>(V1);
            const LValue& L2 = cast<LValue>(V2);
            St = SetValue(St, B, L1.EQ(ValMgr, L2));
          }
          else {
            const NonLValue& R1 = cast<NonLValue>(V1);
            const NonLValue& R2 = cast<NonLValue>(V2);
            St = SetValue(St, B, R1.EQ(ValMgr, R2));
          }
          
          Nodify(Dst, B, N2, St);
void GRConstants::Visit(Stmt* S, GRConstants::NodeTy* Pred,
                        GRConstants::NodeSet& Dst) {
  // FIXME: add metadata to the CFG so that we can disable
  //  this check when we KNOW that there is no block-level subexpression.
  //  The motivation is that this check requires a hashtable lookup.
  if (S != CurrentStmt && getCFG().isBlkExpr(S)) {
    Dst.Add(Pred);
    return;
  }

  switch (S->getStmtClass()) {
    case Stmt::BinaryOperatorClass:
    case Stmt::CompoundAssignOperatorClass:
      VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst);
      break;
      
    case Stmt::UnaryOperatorClass:
      VisitUnaryOperator(cast<UnaryOperator>(S), Pred, Dst);
      break;
      
    case Stmt::ParenExprClass:
      Visit(cast<ParenExpr>(S)->getSubExpr(), Pred, Dst);
      break;
      
    case Stmt::ImplicitCastExprClass: {
      ImplicitCastExpr* C = cast<ImplicitCastExpr>(S);
      VisitCast(C, C->getSubExpr(), Pred, Dst);
      break;
    }
      
    case Stmt::CastExprClass: {
      CastExpr* C = cast<CastExpr>(S);
      VisitCast(C, C->getSubExpr(), Pred, Dst);
      break;
    }
      
    case Stmt::DeclStmtClass:
      VisitDeclStmt(cast<DeclStmt>(S), Pred, Dst);
      break;
      
    default:
      Dst.Add(Pred); // No-op. Simply propagate the current state unchanged.
      break;
//===----------------------------------------------------------------------===//
// "Assume" logic.
//===----------------------------------------------------------------------===//

StateTy GRConstants::Assume(StateTy St, LValue Cond, bool Assumption, 
                            bool& isFeasible) {    
  return St;
}

StateTy GRConstants::Assume(StateTy St, NonLValue Cond, bool Assumption, 
                            bool& isFeasible) {
  
  switch (Cond.getSubKind()) {
    default:
      assert (false && "'Assume' not implemented for this NonLValue.");
      return St;
      
    case ConcreteIntKind: {
      bool b = cast<ConcreteInt>(Cond).getValue() != 0;
      isFeasible = b ? Assumption : !Assumption;      
      return St;
    }
  }
}


//===----------------------------------------------------------------------===//
// Driver.
//===----------------------------------------------------------------------===//

static GRConstants* GraphPrintCheckerState;

namespace llvm {
template<>
struct VISIBILITY_HIDDEN DOTGraphTraits<GRConstants::NodeTy*> :
  public DefaultDOTGraphTraits {

  static void PrintKindLabel(std::ostream& Out, ValueKey::Kind kind) {
Ted Kremenek's avatar
Ted Kremenek committed
      case ValueKey::IsSubExpr:  Out << "Sub-Expressions:\\l"; break;
      case ValueKey::IsDecl:    Out << "Variables:\\l"; break;
      case ValueKey::IsBlkExpr: Out << "Block-level Expressions:\\l"; break;
      default: assert (false && "Unknown ValueKey type.");
    }
  }
    
  static void PrintKind(std::ostream& Out, GRConstants::StateTy M,
                        ValueKey::Kind kind, bool isFirstGroup = false) {
    bool isFirst = true;
    
    for (GRConstants::StateTy::iterator I=M.begin(), E=M.end();I!=E;++I) {        
      if (I.getKey().getKind() != kind)
        continue;
    
      if (isFirst) {
        if (!isFirstGroup) Out << "\\l\\l";
        PrintKindLabel(Out, kind);
        isFirst = false;
      }
      else
        Out << "\\l";
      
      Out << ' ';
    
      if (ValueDecl* V = dyn_cast<ValueDecl>(I.getKey()))
        Out << V->getName();          
      else {
        Stmt* E = cast<Stmt>(I.getKey());
        Out << " (" << (void*) E << ") ";
        E->printPretty(Out);
      }
    
      Out << " : ";
      I.getData().print(Out);
    }
  }
    
  static std::string getNodeLabel(const GRConstants::NodeTy* N, void*) {
    std::ostringstream Out;
    ProgramPoint Loc = N->getLocation();
    
    switch (Loc.getKind()) {
      case ProgramPoint::BlockEntranceKind:
        Out << "Block Entrance: B" 
            << cast<BlockEntrance>(Loc).getBlock()->getBlockID();
        break;
      
      case ProgramPoint::BlockExitKind:
        assert (false);
        break;
        
      case ProgramPoint::PostStmtKind: {
        const PostStmt& L = cast<PostStmt>(Loc);
        Out << L.getStmt()->getStmtClassName() << ':' 
            << (void*) L.getStmt() << ' ';
        
        L.getStmt()->printPretty(Out);
        break;
      }
    
      default: {
        const BlockEdge& E = cast<BlockEdge>(Loc);
        Out << "Edge: (B" << E.getSrc()->getBlockID() << ", B"
            << E.getDst()->getBlockID()  << ')';
        
        if (Stmt* T = E.getSrc()->getTerminator()) {
          Out << "\\|Terminator: ";
          E.getSrc()->printTerminator(Out);
          
          if (isa<SwitchStmt>(T)) {
            // FIXME
          }
          else {
            Out << "\\lCondition: ";
            if (*E.getSrc()->succ_begin() == E.getDst())
              Out << "true";
            else
              Out << "false";                        
          }
          
          Out << "\\l";
        }
        
        if (GraphPrintCheckerState->isUninitControlFlow(N)) {
          Out << "\\|Control-flow based on\\lUninitialized value.\\l";
        }
    Out << "\\|StateID: " << (void*) N->getState().getRoot() << "\\|";
    PrintKind(Out, N->getState(), ValueKey::IsDecl, true);
    PrintKind(Out, N->getState(), ValueKey::IsBlkExpr);
Ted Kremenek's avatar
Ted Kremenek committed
    PrintKind(Out, N->getState(), ValueKey::IsSubExpr);
void RunGRConstants(CFG& cfg, FunctionDecl& FD, ASTContext& Ctx) {
  GREngine<GRConstants> Engine(cfg, FD, Ctx);
  Engine.ExecuteWorkList();  
  GraphPrintCheckerState = &Engine.getCheckerState();
  llvm::ViewGraph(*Engine.getGraph().roots_begin(),"GRConstants");