"llvm/lib/git@repo.hca.bsc.es:rferrer/llvm-epi-0.8.git" did not exist on "a09d95412e98c0ee9e59297b1634e162152037f1"
Newer
Older
for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
IntervalPtr &IP = fixed_[i];
LiveInterval *I = IP.first;
const TargetRegisterClass *RegRC = OneClassForEachPhysReg[I->reg];
if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&
I->endIndex() > StartPosition) {
LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
IP.second = II;
if (II != I->begin() && II->start > StartPosition)
--II;
if (cur->overlapsFrom(*I, II)) {
unsigned reg = I->reg;
SpillWeightsToAdd.push_back(std::make_pair(reg, I->weight));
}
}
}
// Using the newly updated regUse_ object, which includes conflicts in the
// future, see if there are any registers available.
physReg = getFreePhysReg(cur);
}
}
// Restore the physical register tracker, removing information about the
// future.
// If we find a free register, we are done: assign this virtual to
// the free physical register and add this interval to the active
// list.
if (physReg) {
DEBUG(errs() << tri_->getName(physReg) << '\n');
vrm_->assignVirt2Phys(cur->reg, physReg);
active_.push_back(std::make_pair(cur, cur->begin()));
// "Upgrade" the physical register since it has been allocated.
UpgradeRegister(physReg);
if (LiveInterval *NextReloadLI = hasNextReloadInterval(cur)) {
// "Downgrade" physReg to try to keep physReg from being allocated until
// the next reload from the same SS is allocated.
DowngradeRegister(cur, physReg);
}
DEBUG(errs() << "no free registers\n");
// Compile the spill weights into an array that is better for scanning.
std::vector<float> SpillWeights(tri_->getNumRegs(), 0.0f);
for (std::vector<std::pair<unsigned, float> >::iterator
I = SpillWeightsToAdd.begin(), E = SpillWeightsToAdd.end(); I != E; ++I)
Evan Cheng
committed
updateSpillWeights(SpillWeights, I->first, I->second, RC);
// for each interval in active, update spill weights.
for (IntervalPtrs::const_iterator i = active_.begin(), e = active_.end();
i != e; ++i) {
unsigned reg = i->first->reg;
assert(TargetRegisterInfo::isVirtualRegister(reg) &&
"Can only allocate virtual registers!");
reg = vrm_->getPhys(reg);
Evan Cheng
committed
updateSpillWeights(SpillWeights, reg, i->first->weight, RC);
}
DEBUG(errs() << "\tassigning stack slot at interval "<< *cur << ":\n");
unsigned minReg = 0;
bool Found = false;
std::vector<std::pair<unsigned,float> > RegsWeights;
if (!minReg || SpillWeights[minReg] == HUGE_VALF)
for (TargetRegisterClass::iterator i = RC->allocation_order_begin(*mf_),
e = RC->allocation_order_end(*mf_); i != e; ++i) {
unsigned reg = *i;
float regWeight = SpillWeights[reg];
if (minWeight > regWeight)
Found = true;
RegsWeights.push_back(std::make_pair(reg, regWeight));
Alkis Evlogimenos
committed
}
// If we didn't find a register that is spillable, try aliases?
if (!Found) {
for (TargetRegisterClass::iterator i = RC->allocation_order_begin(*mf_),
e = RC->allocation_order_end(*mf_); i != e; ++i) {
unsigned reg = *i;
// No need to worry about if the alias register size < regsize of RC.
// We are going to spill all registers that alias it anyway.
for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as)
RegsWeights.push_back(std::make_pair(*as, SpillWeights[*as]));
}
}
// Sort all potential spill candidates by weight.
std::sort(RegsWeights.begin(), RegsWeights.end(), WeightCompare());
minReg = RegsWeights[0].first;
minWeight = RegsWeights[0].second;
if (minWeight == HUGE_VALF) {
// All registers must have inf weight. Just grab one!
minReg = BestPhysReg ? BestPhysReg : *RC->allocation_order_begin(*mf_);
if (cur->weight == HUGE_VALF ||
Evan Cheng
committed
li_->getApproximateInstructionCount(*cur) == 0) {
// Spill a physical register around defs and uses.
if (li_->spillPhysRegAroundRegDefsUses(*cur, minReg, *vrm_)) {
// spillPhysRegAroundRegDefsUses may have invalidated iterator stored
// in fixed_. Reset them.
for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
IntervalPtr &IP = fixed_[i];
LiveInterval *I = IP.first;
if (I->reg == minReg || tri_->isSubRegister(minReg, I->reg))
IP.second = I->advanceTo(I->begin(), StartPosition);
}
DowngradedRegs.clear();
assignRegOrStackSlotAtInterval(cur);
} else {
llvm_report_error("Ran out of registers during register allocation!");
Evan Cheng
committed
return;
}
}
// Find up to 3 registers to consider as spill candidates.
unsigned LastCandidate = RegsWeights.size() >= 3 ? 3 : 1;
while (LastCandidate > 1) {
if (weightsAreClose(RegsWeights[LastCandidate-1].second, minWeight))
break;
--LastCandidate;
}
DEBUG({
errs() << "\t\tregister(s) with min weight(s): ";
for (unsigned i = 0; i != LastCandidate; ++i)
errs() << tri_->getName(RegsWeights[i].first)
<< " (" << RegsWeights[i].second << ")\n";
});
// If the current has the minimum weight, we need to spill it and
// add any added intervals back to unhandled, and restart
// linearscan.
if (cur->weight != HUGE_VALF && cur->weight <= minWeight) {
DEBUG(errs() << "\t\t\tspilling(c): " << *cur << '\n');
SmallVector<LiveInterval*, 8> spillIs;
std::vector<LiveInterval*> added;
if (!NewSpillFramework) {
added = li_->addIntervalsForSpills(*cur, spillIs, loopInfo, *vrm_);
Lang Hames
committed
} else {
added = spiller_->spill(cur);
}
std::sort(added.begin(), added.end(), LISorter());
Evan Cheng
committed
addStackInterval(cur, ls_, li_, mri_, *vrm_);
if (added.empty())
return; // Early exit if all spills were folded.
// Merge added with unhandled. Note that we have already sorted
// intervals returned by addIntervalsForSpills by their starting
// This also update the NextReloadMap. That is, it adds mapping from a
// register defined by a reload from SS to the next reload from SS in the
// same basic block.
MachineBasicBlock *LastReloadMBB = 0;
LiveInterval *LastReload = 0;
int LastReloadSS = VirtRegMap::NO_STACK_SLOT;
for (unsigned i = 0, e = added.size(); i != e; ++i) {
LiveInterval *ReloadLi = added[i];
if (ReloadLi->weight == HUGE_VALF &&
li_->getApproximateInstructionCount(*ReloadLi) == 0) {
LiveIndex ReloadIdx = ReloadLi->beginIndex();
MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx);
int ReloadSS = vrm_->getStackSlot(ReloadLi->reg);
if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) {
// Last reload of same SS is in the same MBB. We want to try to
// allocate both reloads the same register and make sure the reg
// isn't clobbered in between if at all possible.
assert(LastReload->beginIndex() < ReloadIdx);
NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg));
}
LastReloadMBB = ReloadMBB;
LastReload = ReloadLi;
LastReloadSS = ReloadSS;
}
unhandled_.push(ReloadLi);
}
++NumBacktracks;
// Push the current interval back to unhandled since we are going
// to re-run at least this iteration. Since we didn't modify it it
// should go back right in the front of the list
unhandled_.push(cur);
assert(TargetRegisterInfo::isPhysicalRegister(minReg) &&
"did not choose a register to spill?");
// We spill all intervals aliasing the register with
// minimum weight, rollback to the interval with the earliest
// start point and let the linear scan algorithm run again
SmallVector<LiveInterval*, 8> spillIs;
// Determine which intervals have to be spilled.
findIntervalsToSpill(cur, RegsWeights, LastCandidate, spillIs);
// Set of spilled vregs (used later to rollback properly)
SmallSet<unsigned, 8> spilled;
// The earliest start of a Spilled interval indicates up to where
// in handled we need to roll back
Lang Hames
committed
LiveInterval *earliestStartInterval = cur;
// Spill live intervals of virtual regs mapped to the physical register we
// want to clear (and its aliases). We only spill those that overlap with the
// current interval as the rest do not affect its allocation. we also keep
// track of the earliest start of all spilled live intervals since this will
// mark our rollback point.
std::vector<LiveInterval*> added;
while (!spillIs.empty()) {
LiveInterval *sli = spillIs.back();
spillIs.pop_back();
DEBUG(errs() << "\t\t\tspilling(a): " << *sli << '\n');
Lang Hames
committed
earliestStartInterval =
(earliestStartInterval->beginIndex() < sli->beginIndex()) ?
Lang Hames
committed
earliestStartInterval : sli;
Lang Hames
committed
std::vector<LiveInterval*> newIs;
if (!NewSpillFramework) {
newIs = li_->addIntervalsForSpills(*sli, spillIs, loopInfo, *vrm_);
} else {
newIs = spiller_->spill(sli);
}
Evan Cheng
committed
addStackInterval(sli, ls_, li_, mri_, *vrm_);
std::copy(newIs.begin(), newIs.end(), std::back_inserter(added));
spilled.insert(sli->reg);
LiveIndex earliestStart = earliestStartInterval->beginIndex();
Lang Hames
committed
DEBUG(errs() << "\t\trolling back to: " << earliestStart << '\n');
// Scan handled in reverse order up to the earliest start of a
// spilled live interval and undo each one, restoring the state of
while (!handled_.empty()) {
LiveInterval* i = handled_.back();
// If this interval starts before t we are done.
if (i->beginIndex() < earliestStart)
DEBUG(errs() << "\t\t\tundo changes for: " << *i << '\n');
// When undoing a live interval allocation we must know if it is active or
// inactive to properly update regUse_ and the VirtRegMap.
if ((it = FindIntervalInVector(active_, i)) != active_.end()) {
assert(!TargetRegisterInfo::isPhysicalRegister(i->reg));
} else if ((it = FindIntervalInVector(inactive_, i)) != inactive_.end()) {
assert(!TargetRegisterInfo::isPhysicalRegister(i->reg));
assert(TargetRegisterInfo::isVirtualRegister(i->reg) &&
"Can only allocate virtual registers!");
vrm_->clearVirt(i->reg);
Evan Cheng
committed
DenseMap<unsigned, unsigned>::iterator ii = DowngradeMap.find(i->reg);
if (ii == DowngradeMap.end())
// It interval has a preference, it must be defined by a copy. Clear the
// preference now since the source interval allocation may have been
// undone as well.
else {
UpgradeRegister(ii->second);
}
// Rewind the iterators in the active, inactive, and fixed lists back to the
// point we reverted to.
RevertVectorIteratorsTo(active_, earliestStart);
RevertVectorIteratorsTo(inactive_, earliestStart);
RevertVectorIteratorsTo(fixed_, earliestStart);
// Scan the rest and undo each interval that expired after t and
// insert it in active (the next iteration of the algorithm will
// put it in inactive if required)
for (unsigned i = 0, e = handled_.size(); i != e; ++i) {
LiveInterval *HI = handled_[i];
if (!HI->expiredAt(earliestStart) &&
HI->expiredAt(cur->beginIndex())) {
DEBUG(errs() << "\t\t\tundo changes for: " << *HI << '\n');
active_.push_back(std::make_pair(HI, HI->begin()));
assert(!TargetRegisterInfo::isPhysicalRegister(HI->reg));
// Merge added with unhandled.
// This also update the NextReloadMap. That is, it adds mapping from a
// register defined by a reload from SS to the next reload from SS in the
// same basic block.
MachineBasicBlock *LastReloadMBB = 0;
LiveInterval *LastReload = 0;
int LastReloadSS = VirtRegMap::NO_STACK_SLOT;
std::sort(added.begin(), added.end(), LISorter());
for (unsigned i = 0, e = added.size(); i != e; ++i) {
LiveInterval *ReloadLi = added[i];
if (ReloadLi->weight == HUGE_VALF &&
li_->getApproximateInstructionCount(*ReloadLi) == 0) {
LiveIndex ReloadIdx = ReloadLi->beginIndex();
MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx);
int ReloadSS = vrm_->getStackSlot(ReloadLi->reg);
if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) {
// Last reload of same SS is in the same MBB. We want to try to
// allocate both reloads the same register and make sure the reg
// isn't clobbered in between if at all possible.
assert(LastReload->beginIndex() < ReloadIdx);
NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg));
}
LastReloadMBB = ReloadMBB;
LastReload = ReloadLi;
LastReloadSS = ReloadSS;
}
unhandled_.push(ReloadLi);
}
}
unsigned RALinScan::getFreePhysReg(LiveInterval* cur,
const TargetRegisterClass *RC,
unsigned MaxInactiveCount,
SmallVector<unsigned, 256> &inactiveCounts,
bool SkipDGRegs) {
unsigned FreeReg = 0;
unsigned FreeRegInactiveCount = 0;
Evan Cheng
committed
std::pair<unsigned, unsigned> Hint = mri_->getRegAllocationHint(cur->reg);
// Resolve second part of the hint (if possible) given the current allocation.
unsigned physReg = Hint.second;
if (physReg &&
TargetRegisterInfo::isVirtualRegister(physReg) && vrm_->hasPhys(physReg))
physReg = vrm_->getPhys(physReg);
Evan Cheng
committed
tie(I, E) = tri_->getAllocationOrder(RC, Hint.first, physReg, *mf_);
assert(I != E && "No allocatable register in this register class!");
// Scan for the first available register.
for (; I != E; ++I) {
unsigned Reg = *I;
// Ignore "downgraded" registers.
if (SkipDGRegs && DowngradedRegs.count(Reg))
continue;
FreeReg = Reg;
if (FreeReg < inactiveCounts.size())
FreeRegInactiveCount = inactiveCounts[FreeReg];
else
FreeRegInactiveCount = 0;
break;
}
}
// If there are no free regs, or if this reg has the max inactive count,
// return this register.
if (FreeReg == 0 || FreeRegInactiveCount == MaxInactiveCount)
return FreeReg;
// Continue scanning the registers, looking for the one with the highest
// inactive count. Alkis found that this reduced register pressure very
// slightly on X86 (in rev 1.94 of this file), though this should probably be
// reevaluated now.
for (; I != E; ++I) {
unsigned Reg = *I;
// Ignore "downgraded" registers.
if (SkipDGRegs && DowngradedRegs.count(Reg))
continue;
if (isRegAvail(Reg) && Reg < inactiveCounts.size() &&
FreeRegInactiveCount < inactiveCounts[Reg]) {
FreeReg = Reg;
FreeRegInactiveCount = inactiveCounts[Reg];
if (FreeRegInactiveCount == MaxInactiveCount)
break; // We found the one with the max inactive count.
}
}
return FreeReg;
/// getFreePhysReg - return a free physical register for this virtual register
/// interval if we have one, otherwise return 0.
Bill Wendling
committed
unsigned RALinScan::getFreePhysReg(LiveInterval *cur) {
SmallVector<unsigned, 256> inactiveCounts;
unsigned MaxInactiveCount = 0;
const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
for (IntervalPtrs::iterator i = inactive_.begin(), e = inactive_.end();
i != e; ++i) {
unsigned reg = i->first->reg;
assert(TargetRegisterInfo::isVirtualRegister(reg) &&
"Can only allocate virtual registers!");
// If this is not in a related reg class to the register we're allocating,
// don't check it.
const TargetRegisterClass *RegRC = mri_->getRegClass(reg);
if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader) {
reg = vrm_->getPhys(reg);
if (inactiveCounts.size() <= reg)
inactiveCounts.resize(reg+1);
++inactiveCounts[reg];
MaxInactiveCount = std::max(MaxInactiveCount, inactiveCounts[reg]);
}
}
// If copy coalescer has assigned a "preferred" register, check if it's
// available first.
unsigned Preference = vrm_->getRegAllocPref(cur->reg);
if (Preference) {
DEBUG(errs() << "(preferred: " << tri_->getName(Preference) << ") ");
if (isRegAvail(Preference) &&
RC->contains(Preference))
return Preference;
if (!DowngradedRegs.empty()) {
unsigned FreeReg = getFreePhysReg(cur, RC, MaxInactiveCount, inactiveCounts,
true);
if (FreeReg)
return FreeReg;
return getFreePhysReg(cur, RC, MaxInactiveCount, inactiveCounts, false);
Alkis Evlogimenos
committed
}
FunctionPass* llvm::createLinearScanRegisterAllocator() {
Bill Wendling
committed
return new RALinScan();