Newer
Older
Constant *Op = CE->getOperand(0);
const Type *Ty = CE->getType();
const TargetData *TD = TM.getTargetData();
// We can emit the pointer value into this slot if the slot is an
// integer slot greater or equal to the size of the pointer.
if (TD->getTypeAllocSize(Ty) == TD->getTypeAllocSize(Op->getType()))
return EmitConstantValueOnly(Op);
O << "((";
EmitConstantValueOnly(Op);
APInt ptrMask =
APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Op->getType()));
SmallString<40> S;
ptrMask.toStringUnsigned(S);
O << ") & " << S.str() << ')';
return;
}
case Instruction::Trunc:
// We emit the value and depend on the assembler to truncate the generated
// expression properly. This is important for differences between
// blockaddress labels. Since the two labels are in the same function, it
// is reasonable to treat their delta as a 32-bit value.
return EmitConstantValueOnly(CE->getOperand(0));
case Instruction::Add:
case Instruction::Sub:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
O << '(';
EmitConstantValueOnly(CE->getOperand(0));
O << ')';
switch (CE->getOpcode()) {
case Instruction::Add:
O << " + ";
break;
case Instruction::Sub:
O << " - ";
break;
Anton Korobeynikov
committed
case Instruction::And:
O << " & ";
break;
Anton Korobeynikov
committed
case Instruction::Or:
O << " | ";
break;
Anton Korobeynikov
committed
case Instruction::Xor:
O << " ^ ";
break;
break;
O << '(';
EmitConstantValueOnly(CE->getOperand(1));
O << ')';
break;
/// printAsCString - Print the specified array as a C compatible string, only if
/// the predicate isString is true.
///
static void printAsCString(formatted_raw_ostream &O, const ConstantArray *CVA,
unsigned LastElt) {
assert(CVA->isString() && "Array is not string compatible!");
O << '\"';
for (unsigned i = 0; i != LastElt; ++i) {
(unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
printStringChar(O, C);
O << '\"';
Jeff Cohen
committed
/// EmitString - Emit a zero-byte-terminated string constant.
///
void AsmPrinter::EmitString(const ConstantArray *CVA) const {
unsigned NumElts = CVA->getNumOperands();
if (MAI->getAscizDirective() && NumElts &&
cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
O << MAI->getAscizDirective();
Jeff Cohen
committed
printAsCString(O, CVA, NumElts-1);
} else {
O << MAI->getAsciiDirective();
Jeff Cohen
committed
printAsCString(O, CVA, NumElts);
}
O << '\n';
Jeff Cohen
committed
}
static void EmitGlobalConstantArray(const ConstantArray *CA, unsigned AddrSpace,
AsmPrinter &AP) {
if (AddrSpace == 0 && CA->isString()) {
AP.EmitString(CA);
} else { // Not a string. Print the values in successive locations
for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
AP.EmitGlobalConstant(CA->getOperand(i), AddrSpace);
}
}
static void EmitGlobalConstantVector(const ConstantVector *CV,
unsigned AddrSpace, AsmPrinter &AP) {
const VectorType *VTy = CV->getType();
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
AP.EmitGlobalConstant(CV->getOperand(i), AddrSpace);
}
static void EmitGlobalConstantStruct(const ConstantStruct *CS,
unsigned AddrSpace, AsmPrinter &AP) {
// Print the fields in successive locations. Pad to align if needed!
const TargetData *TD = AP.TM.getTargetData();
unsigned Size = TD->getTypeAllocSize(CS->getType());
const StructLayout *cvsLayout = TD->getStructLayout(CS->getType());
uint64_t SizeSoFar = 0;
for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
const Constant *field = CS->getOperand(i);
// Check if padding is needed and insert one or more 0s.
uint64_t fieldSize = TD->getTypeAllocSize(field->getType());
uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
- cvsLayout->getElementOffset(i)) - fieldSize;
SizeSoFar += fieldSize + padSize;
// Now print the actual field value.
AP.EmitGlobalConstant(field, AddrSpace);
// Insert padding - this may include padding to increase the size of the
// current field up to the ABI size (if the struct is not packed) as well
// as padding to ensure that the next field starts at the right offset.
AP.OutStreamer.EmitZeros(padSize, AddrSpace);
}
assert(SizeSoFar == cvsLayout->getSizeInBytes() &&
"Layout of constant struct may be incorrect!");
}
void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP,
Sanjiv Gupta
committed
unsigned AddrSpace) {
// FP Constants are printed as integer constants to avoid losing
// precision...
const TargetData &TD = *TM.getTargetData();
if (CFP->getType()->isDoubleTy()) {
if (VerboseAsm) {
double Val = CFP->getValueAPF().convertToDouble(); // for comment only
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << " double " << Val << '\n';
}
uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
if (MAI->getData64bitsDirective(AddrSpace)) {
O << MAI->getData64bitsDirective(AddrSpace) << i << '\n';
} else if (TD.isBigEndian()) {
O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32) << '\n';
O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i) << '\n';
} else {
O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i) << '\n';
O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32) << '\n';
}
return;
}
if (CFP->getType()->isFloatTy()) {
if (VerboseAsm) {
float Val = CFP->getValueAPF().convertToFloat(); // for comment only
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << " float " << Val << '\n';
O << MAI->getData32bitsDirective(AddrSpace)
<< CFP->getValueAPF().bitcastToAPInt().getZExtValue() << '\n';
return;
}
if (CFP->getType()->isX86_FP80Ty()) {
// all long double variants are printed as hex
// api needed to prevent premature destruction
APInt API = CFP->getValueAPF().bitcastToAPInt();
const uint64_t *p = API.getRawData();
if (VerboseAsm) {
// Convert to double so we can print the approximate val as a comment.
APFloat DoubleVal = CFP->getValueAPF();
bool ignored;
DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
&ignored);
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << " x86_fp80 ~= "
<< DoubleVal.convertToDouble() << '\n';
}
if (TD.isBigEndian()) {
O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]) << '\n';
O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48)<<'\n';
O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32)<<'\n';
O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16)<<'\n';
O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]) <<'\n';
} else {
O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]) << '\n';
O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16)<<'\n';
O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32)<<'\n';
O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48)<<'\n';
O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]) << '\n';
}
OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) -
TD.getTypeStoreSize(CFP->getType()), AddrSpace);
return;
}
assert(CFP->getType()->isPPC_FP128Ty() &&
"Floating point constant type not handled");
// All long double variants are printed as hex api needed to prevent
// premature destruction.
APInt API = CFP->getValueAPF().bitcastToAPInt();
const uint64_t *p = API.getRawData();
if (TD.isBigEndian()) {
O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32)<<'\n';
O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0])<<'\n';
O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32)<<'\n';
O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1])<<'\n';
} else {
O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1])<<'\n';
O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32)<<'\n';
O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0])<<'\n';
O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32)<<'\n';
}
}
Sanjiv Gupta
committed
void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI,
unsigned AddrSpace) {
const TargetData *TD = TM.getTargetData();
unsigned BitWidth = CI->getBitWidth();
assert((BitWidth & 63) == 0 && "only support multiples of 64-bits");
// We don't expect assemblers to support integer data directives
// for more than 64 bits, so we emit the data in at most 64-bit
// quantities at a time.
const uint64_t *RawData = CI->getValue().getRawData();
for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
uint64_t Val;
if (TD->isBigEndian())
Val = RawData[e - i - 1];
else
Val = RawData[i];
Chris Lattner
committed
if (MAI->getData64bitsDirective(AddrSpace)) {
O << MAI->getData64bitsDirective(AddrSpace) << Val << '\n';
Chris Lattner
committed
continue;
}
Chris Lattner
committed
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
// Emit two 32-bit chunks, order depends on endianness.
unsigned FirstChunk = unsigned(Val), SecondChunk = unsigned(Val >> 32);
const char *FirstName = " least", *SecondName = " most";
if (TD->isBigEndian()) {
std::swap(FirstChunk, SecondChunk);
std::swap(FirstName, SecondName);
}
O << MAI->getData32bitsDirective(AddrSpace) << FirstChunk;
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< FirstName << " significant half of i64 " << Val;
}
O << '\n';
O << MAI->getData32bitsDirective(AddrSpace) << SecondChunk;
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< SecondName << " significant half of i64 " << Val;
}
O << '\n';
}
}
/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
Sanjiv Gupta
committed
void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
const TargetData *TD = TM.getTargetData();
const Type *type = CV->getType();
unsigned Size = TD->getTypeAllocSize(type);
if (CV->isNullValue() || isa<UndefValue>(CV))
return OutStreamer.EmitZeros(Size, AddrSpace);
if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
return EmitGlobalConstantArray(CVA, AddrSpace, *this);
if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
return EmitGlobalConstantStruct(CVS, AddrSpace, *this);
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
return EmitGlobalConstantFP(CFP, AddrSpace);
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
// If we can directly emit an 8-byte constant, do it.
if (Size == 8)
if (const char *Data64Dir = MAI->getData64bitsDirective(AddrSpace)) {
O << Data64Dir << CI->getZExtValue() << '\n';
return;
}
// Small integers are handled below; large integers are handled here.
if (Size > 4) {
Sanjiv Gupta
committed
EmitGlobalConstantLargeInt(CI, AddrSpace);
}
if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
return EmitGlobalConstantVector(V, AddrSpace, *this);
Sanjiv Gupta
committed
printDataDirective(type, AddrSpace);
EmitConstantValueOnly(CV);
if (VerboseAsm) {
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
SmallString<40> S;
CI->getValue().toStringUnsigned(S, 16);
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << " 0x" << S.str();
}
O << '\n';
void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
// Target doesn't support this yet!
llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
}
/// PrintSpecial - Print information related to the specified machine instr
/// that is independent of the operand, and may be independent of the instr
/// itself. This can be useful for portably encoding the comment character
/// or other bits of target-specific knowledge into the asmstrings. The
/// syntax used is ${:comment}. Targets can override this to add support
/// for their own strange codes.
void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const {
if (!strcmp(Code, "private")) {
O << MAI->getPrivateGlobalPrefix();
} else if (!strcmp(Code, "comment")) {
O << MAI->getCommentString();
} else if (!strcmp(Code, "uid")) {
// Comparing the address of MI isn't sufficient, because machineinstrs may
// be allocated to the same address across functions.
const Function *ThisF = MI->getParent()->getParent()->getFunction();
// If this is a new LastFn instruction, bump the counter.
if (LastMI != MI || LastFn != ThisF) {
O << Counter;
} else {
std::string msg;
raw_string_ostream Msg(msg);
Msg << "Unknown special formatter '" << Code
Bill Wendling
committed
<< "' for machine instr: " << *MI;
llvm_report_error(Msg.str());
}
}
Argyrios Kyrtzidis
committed
/// processDebugLoc - Processes the debug information of each machine
/// instruction's DebugLoc.
Devang Patel
committed
void AsmPrinter::processDebugLoc(const MachineInstr *MI,
bool BeforePrintingInsn) {
if (!MAI || !DW || !MAI->doesSupportDebugInformation()
|| !DW->ShouldEmitDwarfDebug())
Chris Lattner
committed
return;
DebugLoc DL = MI->getDebugLoc();
if (DL.isUnknown())
return;
DILocation CurDLT = MF->getDILocation(DL);
if (CurDLT.getScope().isNull())
return;
if (BeforePrintingInsn) {
if (CurDLT.getNode() != PrevDLT) {
unsigned L = DW->RecordSourceLine(CurDLT.getLineNumber(),
CurDLT.getColumnNumber(),
CurDLT.getScope().getNode());
O << '\n';
Argyrios Kyrtzidis
committed
}
} else {
// After printing instruction
DW->EndScope(MI);
Argyrios Kyrtzidis
committed
}
}
/// printInlineAsm - This method formats and prints the specified machine
/// instruction that is an inline asm.
void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
unsigned NumOperands = MI->getNumOperands();
// Count the number of register definitions.
unsigned NumDefs = 0;
for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
assert(NumDefs != NumOperands-1 && "No asm string?");
assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
// Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
O << '\t';
// If this asmstr is empty, just print the #APP/#NOAPP markers.
// These are useful to see where empty asm's wound up.
if (AsmStr[0] == 0) {
O << MAI->getCommentString() << MAI->getInlineAsmStart() << "\n\t";
O << MAI->getCommentString() << MAI->getInlineAsmEnd() << '\n';
return;
}
O << MAI->getCommentString() << MAI->getInlineAsmStart() << "\n\t";
int AsmPrinterVariant = MAI->getAssemblerDialect();
int CurVariant = -1; // The number of the {.|.|.} region we are in.
const char *LastEmitted = AsmStr; // One past the last character emitted.
while (*LastEmitted) {
switch (*LastEmitted) {
default: {
// Not a special case, emit the string section literally.
const char *LiteralEnd = LastEmitted+1;
while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
*LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
++LiteralEnd;
if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
O.write(LastEmitted, LiteralEnd-LastEmitted);
LastEmitted = LiteralEnd;
break;
}
case '\n':
++LastEmitted; // Consume newline character.
O << '\n'; // Indent code with newline.
case '$': {
++LastEmitted; // Consume '$' character.
bool Done = true;
// Handle escapes.
switch (*LastEmitted) {
default: Done = false; break;
case '$': // $$ -> $
if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
O << '$';
++LastEmitted; // Consume second '$' character.
break;
case '(': // $( -> same as GCC's { character.
++LastEmitted; // Consume '(' character.
if (CurVariant != -1) {
llvm_report_error("Nested variants found in inline asm string: '"
+ std::string(AsmStr) + "'");
}
CurVariant = 0; // We're in the first variant now.
break;
case '|':
++LastEmitted; // consume '|' character.
if (CurVariant == -1)
O << '|'; // this is gcc's behavior for | outside a variant
else
++CurVariant; // We're in the next variant.
break;
case ')': // $) -> same as GCC's } char.
++LastEmitted; // consume ')' character.
if (CurVariant == -1)
O << '}'; // this is gcc's behavior for } outside a variant
else
CurVariant = -1;
break;
}
if (Done) break;
bool HasCurlyBraces = false;
if (*LastEmitted == '{') { // ${variable}
++LastEmitted; // Consume '{' character.
HasCurlyBraces = true;
}
// If we have ${:foo}, then this is not a real operand reference, it is a
// "magic" string reference, just like in .td files. Arrange to call
// PrintSpecial.
if (HasCurlyBraces && *LastEmitted == ':') {
++LastEmitted;
const char *StrStart = LastEmitted;
const char *StrEnd = strchr(StrStart, '}');
if (StrEnd == 0) {
llvm_report_error("Unterminated ${:foo} operand in inline asm string: '"
+ std::string(AsmStr) + "'");
}
std::string Val(StrStart, StrEnd);
PrintSpecial(MI, Val.c_str());
LastEmitted = StrEnd+1;
break;
}
const char *IDStart = LastEmitted;
char *IDEnd;
long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
llvm_report_error("Bad $ operand number in inline asm string: '"
+ std::string(AsmStr) + "'");
}
LastEmitted = IDEnd;
char Modifier[2] = { 0, 0 };
if (HasCurlyBraces) {
// If we have curly braces, check for a modifier character. This
// supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
if (*LastEmitted == ':') {
++LastEmitted; // Consume ':' character.
if (*LastEmitted == 0) {
llvm_report_error("Bad ${:} expression in inline asm string: '"
+ std::string(AsmStr) + "'");
}
Modifier[0] = *LastEmitted;
++LastEmitted; // Consume modifier character.
}
if (*LastEmitted != '}') {
llvm_report_error("Bad ${} expression in inline asm string: '"
+ std::string(AsmStr) + "'");
}
++LastEmitted; // Consume '}' character.
}
if ((unsigned)Val >= NumOperands-1) {
llvm_report_error("Invalid $ operand number in inline asm string: '"
+ std::string(AsmStr) + "'");
}
// Okay, we finally have a value number. Ask the target to print this
// operand!
if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
unsigned OpNo = 1;
// Scan to find the machine operand number for the operand.
for (; Val; --Val) {
if (OpNo >= MI->getNumOperands()) break;
unsigned OpFlags = MI->getOperand(OpNo).getImm();
Evan Cheng
committed
OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
if (OpNo >= MI->getNumOperands()) {
Error = true;
unsigned OpFlags = MI->getOperand(OpNo).getImm();
++OpNo; // Skip over the ID number.
if (Modifier[0] == 'l') // labels are target independent
O << *GetMBBSymbol(MI->getOperand(OpNo).getMBB()->getNumber());
else {
AsmPrinter *AP = const_cast<AsmPrinter*>(this);
if ((OpFlags & 7) == 4) {
Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
Modifier[0] ? Modifier : 0);
} else {
Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
Modifier[0] ? Modifier : 0);
}
}
if (Error) {
std::string msg;
raw_string_ostream Msg(msg);
Msg << "Invalid operand found in inline asm: '" << AsmStr << "'\n";
MI->print(Msg);
llvm_report_error(Msg.str());
}
}
break;
}
}
}
O << "\n\t" << MAI->getCommentString() << MAI->getInlineAsmEnd();
}
/// printImplicitDef - This method prints the specified machine instruction
/// that is an implicit def.
void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
if (!VerboseAsm) return;
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << " implicit-def: "
<< TRI->getName(MI->getOperand(0).getReg());
}
void AsmPrinter::printKill(const MachineInstr *MI) const {
if (!VerboseAsm) return;
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << " kill:";
for (unsigned n = 0, e = MI->getNumOperands(); n != e; ++n) {
const MachineOperand &op = MI->getOperand(n);
assert(op.isReg() && "KILL instruction must have only register operands");
O << ' ' << TRI->getName(op.getReg()) << (op.isDef() ? "<def>" : "<kill>");
}
}
/// printLabel - This method prints a local label used by debug and
/// exception handling tables.
void AsmPrinter::printLabel(const MachineInstr *MI) const {
printLabel(MI->getOperand(0).getImm());
Evan Cheng
committed
void AsmPrinter::printLabel(unsigned Id) const {
O << MAI->getPrivateGlobalPrefix() << "label" << Id << ':';
Evan Cheng
committed
}
/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
/// instruction, using the specified assembler variant. Targets should
bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant, const char *ExtraCode) {
// Target doesn't support this yet!
return true;
bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant,
const char *ExtraCode) {
// Target doesn't support this yet!
return true;
}
MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA,
const char *Suffix) const {
return GetBlockAddressSymbol(BA->getFunction(), BA->getBasicBlock(), Suffix);
}
MCSymbol *AsmPrinter::GetBlockAddressSymbol(const Function *F,
const BasicBlock *BB,
const char *Suffix) const {
assert(BB->hasName() &&
"Address of anonymous basic block not supported yet!");
// This code must use the function name itself, and not the function number,
// since it must be possible to generate the label name from within other
// functions.
SmallString<60> FnName;
Mang->getNameWithPrefix(FnName, F, false);
// FIXME: THIS IS BROKEN IF THE LLVM BASIC BLOCK DOESN'T HAVE A NAME!
SmallString<60> NameResult;
Mang->getNameWithPrefix(NameResult,
StringRef("BA") + Twine((unsigned)FnName.size()) +
"_" + FnName.str() + "_" + BB->getName() + Suffix,
Mangler::Private);
return OutContext.GetOrCreateSymbol(NameResult.str());
MCSymbol *AsmPrinter::GetMBBSymbol(unsigned MBBID) const {
SmallString<60> Name;
raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "BB"
<< getFunctionNumber() << '_' << MBBID;
return OutContext.GetOrCreateSymbol(Name.str());
}
/// GetGlobalValueSymbol - Return the MCSymbol for the specified global
/// value.
MCSymbol *AsmPrinter::GetGlobalValueSymbol(const GlobalValue *GV) const {
SmallString<60> NameStr;
Mang->getNameWithPrefix(NameStr, GV, false);
return OutContext.GetOrCreateSymbol(NameStr.str());
}
/// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with
/// global value name as its base, with the specified suffix, and where the
/// symbol is forced to have private linkage if ForcePrivate is true.
MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV,
StringRef Suffix,
bool ForcePrivate) const {
Mang->getNameWithPrefix(NameStr, GV, ForcePrivate);
NameStr.append(Suffix.begin(), Suffix.end());
return OutContext.GetOrCreateSymbol(NameStr.str());
}
/// GetExternalSymbolSymbol - Return the MCSymbol for the specified
/// ExternalSymbol.
MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
SmallString<60> NameStr;
Mang->getNameWithPrefix(NameStr, Sym);
return OutContext.GetOrCreateSymbol(NameStr.str());
}
/// EmitBasicBlockStart - This method prints the label for the specified
/// MachineBasicBlock, an alignment (if present) and a comment describing
/// it if appropriate.
void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
// Emit an alignment directive for this block, if needed.
if (unsigned Align = MBB->getAlignment())
EmitAlignment(Log2_32(Align));
Evan Cheng
committed
// If the block has its address taken, emit a special label to satisfy
// references to the block. This is done so that we don't need to
// remember the number of this label, and so that we can make
// forward references to labels without knowing what their numbers
// will be.
if (MBB->hasAddressTaken()) {
O << *GetBlockAddressSymbol(MBB->getBasicBlock()->getParent(),
MBB->getBasicBlock());
O << ':';
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << " Address Taken";
}
O << '\n';
}
if (MBB->pred_empty() || MBB->isOnlyReachableByFallthrough()) {
if (VerboseAsm)
O << MAI->getCommentString() << " BB#" << MBB->getNumber() << ':';
} else {
O << *GetMBBSymbol(MBB->getNumber()) << ':';
if (!VerboseAsm)
O << '\n';
}
if (VerboseAsm) {
if (const BasicBlock *BB = MBB->getBasicBlock())
if (BB->hasName()) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << ' ';
WriteAsOperand(O, BB, /*PrintType=*/false);
EmitComments(*MBB);
O << '\n';
}
/// printPICJumpTableSetLabel - This method prints a set label for the
/// specified MachineBasicBlock for a jumptable entry.
void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
const MachineBasicBlock *MBB) const {
if (!MAI->getSetDirective())
return;
O << MAI->getSetDirective() << ' ' << MAI->getPrivateGlobalPrefix()
<< getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ','
<< *GetMBBSymbol(MBB->getNumber())
<< '-' << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
}
void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
const MachineBasicBlock *MBB) const {
if (!MAI->getSetDirective())
O << MAI->getSetDirective() << ' ' << MAI->getPrivateGlobalPrefix()
<< "_set_" << MBB->getNumber() << ','
<< *GetMBBSymbol(MBB->getNumber())
<< '-' << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
/// printDataDirective - This method prints the asm directive for the
/// specified type.
Sanjiv Gupta
committed
void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) {
const TargetData *TD = TM.getTargetData();
switch (type->getTypeID()) {
case Type::FloatTyID: case Type::DoubleTyID:
case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
assert(0 && "Should have already output floating point constant.");
default:
assert(0 && "Can't handle printing this type of thing");
case Type::IntegerTyID: {
unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
if (BitWidth <= 8)
O << MAI->getData8bitsDirective(AddrSpace);
O << MAI->getData16bitsDirective(AddrSpace);
O << MAI->getData32bitsDirective(AddrSpace);
assert(MAI->getData64bitsDirective(AddrSpace) &&
O << MAI->getData64bitsDirective(AddrSpace);
} else {
llvm_unreachable("Target cannot handle given data directive width!");
break;
case Type::PointerTyID:
if (TD->getPointerSize() == 8) {
assert(MAI->getData64bitsDirective(AddrSpace) &&
"Target cannot handle 64-bit pointer exprs!");
O << MAI->getData64bitsDirective(AddrSpace);
} else if (TD->getPointerSize() == 2) {
O << MAI->getData16bitsDirective(AddrSpace);
} else if (TD->getPointerSize() == 1) {
O << MAI->getData8bitsDirective(AddrSpace);
O << MAI->getData32bitsDirective(AddrSpace);
}
break;
}
}
void AsmPrinter::printVisibility(const MCSymbol *Sym,
unsigned Visibility) const {
if (Visibility == GlobalValue::HiddenVisibility) {
if (const char *Directive = MAI->getHiddenDirective())
O << Directive << *Sym << '\n';
} else if (Visibility == GlobalValue::ProtectedVisibility) {
if (const char *Directive = MAI->getProtectedDirective())
O << Directive << *Sym << '\n';
}
}
void AsmPrinter::printOffset(int64_t Offset) const {
if (Offset > 0)
O << '+' << Offset;
else if (Offset < 0)
O << Offset;
}
GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
if (!S->usesMetadata())
Gordon Henriksen
committed
return 0;
gcp_iterator GCPI = GCMetadataPrinters.find(S);
Gordon Henriksen
committed
if (GCPI != GCMetadataPrinters.end())
return GCPI->second;
const char *Name = S->getName().c_str();
Gordon Henriksen
committed
for (GCMetadataPrinterRegistry::iterator
I = GCMetadataPrinterRegistry::begin(),
E = GCMetadataPrinterRegistry::end(); I != E; ++I)
if (strcmp(Name, I->getName()) == 0) {
GCMetadataPrinter *GMP = I->instantiate();
GMP->S = S;
GCMetadataPrinters.insert(std::make_pair(S, GMP));
return GMP;
Gordon Henriksen
committed
}
errs() << "no GCMetadataPrinter registered for GC: " << Name << "\n";
llvm_unreachable(0);
Gordon Henriksen
committed
}
void AsmPrinter::EmitComments(const MachineInstr &MI) const {
DILocation DLT = MF->getDILocation(MI.getDebugLoc());
// Print source line info.
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << ' ';
// Omit the directory, because it's likely to be long and uninteresting.
if (!Scope.isNull())
O << Scope.getFilename();
else
O << "<unknown>";
O << ':' << DLT.getLineNumber();
if (DLT.getColumnNumber() != 0)
O << ':' << DLT.getColumnNumber();
// Check for spills and reloads
int FI;
const MachineFrameInfo *FrameInfo =
MI.getParent()->getParent()->getFrameInfo();
// We assume a single instruction only has a spill or reload, not
// both.
if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
if (FrameInfo->isSpillSlotObjectIndex(FI)) {
O << MAI->getCommentString() << ' ' << MMO->getSize() << "-byte Reload";
if (FrameInfo->isSpillSlotObjectIndex(FI)) {
if (Newline) O << '\n';
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << ' '
<< MMO->getSize() << "-byte Folded Reload";
Newline = true;
}
}
else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
if (FrameInfo->isSpillSlotObjectIndex(FI)) {
O << MAI->getCommentString() << ' ' << MMO->getSize() << "-byte Spill";
if (FrameInfo->isSpillSlotObjectIndex(FI)) {
if (Newline) O << '\n';
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << ' '
<< MMO->getSize() << "-byte Folded Spill";
Newline = true;
}
}
// Check for spill-induced copies
unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
if (TM.getInstrInfo()->isMoveInstr(MI, SrcReg, DstReg,
SrcSubIdx, DstSubIdx)) {
if (MI.getAsmPrinterFlag(ReloadReuse)) {
if (Newline) O << '\n';
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << " Reload Reuse";
}
}
/// PrintChildLoopComment - Print comments about child loops within
/// the loop for this basic block, with nesting.
///
static void PrintChildLoopComment(formatted_raw_ostream &O,
const MachineLoop *loop,
const MCAsmInfo *MAI,
int FunctionNumber) {
// Add child loop information
for(MachineLoop::iterator cl = loop->begin(),
clend = loop->end();
cl != clend;
++cl) {
MachineBasicBlock *Header = (*cl)->getHeader();
assert(Header && "No header for loop");
O << '\n';
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString();
O.indent(((*cl)->getLoopDepth()-1)*2)
<< " Child Loop BB" << FunctionNumber << "_"
<< Header->getNumber() << " Depth " << (*cl)->getLoopDepth();
PrintChildLoopComment(O, *cl, MAI, FunctionNumber);
// Add loop depth information
const MachineLoop *loop = LI->getLoopFor(&MBB);
if (loop) {
// Print a newline after bb# annotation.
O << "\n";
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << " Loop Depth " << loop->getLoopDepth()
O.PadToColumn(MAI->getCommentColumn());
MachineBasicBlock *Header = loop->getHeader();
assert(Header && "No header for loop");
if (Header == &MBB) {
O << MAI->getCommentString() << " Loop Header";
PrintChildLoopComment(O, loop, MAI, getFunctionNumber());
O << MAI->getCommentString() << " Loop Header is BB"
<< getFunctionNumber() << "_" << loop->getHeader()->getNumber();
}
if (loop->empty()) {
O << '\n';
O.PadToColumn(MAI->getCommentColumn());