Newer
Older
//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the ASTContext interface.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ASTContext.h"
#include "clang/AST/Expr.h"
#include "clang/AST/RecordLayout.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/Bitcode/Serialize.h"
#include "llvm/Bitcode/Deserialize.h"
using namespace clang;
enum FloatingRank {
FloatRank, DoubleRank, LongDoubleRank
};
ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
TargetInfo &t,
IdentifierTable &idents, SelectorTable &sels,
unsigned size_reserve) :
CFConstantStringTypeDecl(0), ObjCFastEnumerationStateTypeDecl(0),
SourceMgr(SM), LangOpts(LOpts), Target(t),
Idents(idents), Selectors(sels)
{
if (size_reserve > 0) Types.reserve(size_reserve);
InitBuiltinTypes();
BuiltinInfo.InitializeBuiltins(idents, Target);
TUDecl = TranslationUnitDecl::Create(*this);
}
ASTContext::~ASTContext() {
// Deallocate all the types.
while (!Types.empty()) {
Types.back()->Destroy(*this);
Types.pop_back();
}
void ASTContext::PrintStats() const {
fprintf(stderr, "*** AST Context Stats:\n");
fprintf(stderr, " %d types total.\n", (int)Types.size());
unsigned NumBuiltin = 0, NumPointer = 0, NumArray = 0, NumFunctionP = 0;
unsigned NumVector = 0, NumComplex = 0, NumBlockPointer = 0;
unsigned NumFunctionNP = 0, NumTypeName = 0, NumTagged = 0, NumReference = 0;
unsigned NumTagStruct = 0, NumTagUnion = 0, NumTagEnum = 0, NumTagClass = 0;
unsigned NumObjCInterfaces = 0, NumObjCQualifiedInterfaces = 0;
unsigned NumObjCQualifiedIds = 0;
unsigned NumTypeOfTypes = 0, NumTypeOfExprs = 0;
for (unsigned i = 0, e = Types.size(); i != e; ++i) {
Type *T = Types[i];
if (isa<BuiltinType>(T))
++NumBuiltin;
else if (isa<PointerType>(T))
++NumPointer;
else if (isa<BlockPointerType>(T))
++NumBlockPointer;
else if (isa<ComplexType>(T))
++NumComplex;
else if (isa<ArrayType>(T))
++NumArray;
else if (isa<VectorType>(T))
++NumVector;
else if (isa<FunctionTypeNoProto>(T))
++NumFunctionNP;
else if (isa<FunctionTypeProto>(T))
++NumFunctionP;
else if (isa<TypedefType>(T))
++NumTypeName;
++NumTagged;
default: assert(0 && "Unknown tagged type!");
case TagDecl::TK_struct: ++NumTagStruct; break;
case TagDecl::TK_union: ++NumTagUnion; break;
case TagDecl::TK_class: ++NumTagClass; break;
case TagDecl::TK_enum: ++NumTagEnum; break;
} else if (isa<ObjCInterfaceType>(T))
++NumObjCInterfaces;
else if (isa<ObjCQualifiedInterfaceType>(T))
++NumObjCQualifiedInterfaces;
else if (isa<ObjCQualifiedIdType>(T))
++NumObjCQualifiedIds;
else if (isa<TypeOfType>(T))
++NumTypeOfTypes;
else if (isa<TypeOfExpr>(T))
++NumTypeOfExprs;
assert(0 && "Unknown type!");
}
}
fprintf(stderr, " %d builtin types\n", NumBuiltin);
fprintf(stderr, " %d pointer types\n", NumPointer);
fprintf(stderr, " %d block pointer types\n", NumBlockPointer);
fprintf(stderr, " %d complex types\n", NumComplex);
fprintf(stderr, " %d array types\n", NumArray);
fprintf(stderr, " %d vector types\n", NumVector);
fprintf(stderr, " %d function types with proto\n", NumFunctionP);
fprintf(stderr, " %d function types with no proto\n", NumFunctionNP);
fprintf(stderr, " %d typename (typedef) types\n", NumTypeName);
fprintf(stderr, " %d tagged types\n", NumTagged);
fprintf(stderr, " %d struct types\n", NumTagStruct);
fprintf(stderr, " %d union types\n", NumTagUnion);
fprintf(stderr, " %d class types\n", NumTagClass);
fprintf(stderr, " %d enum types\n", NumTagEnum);
fprintf(stderr, " %d interface types\n", NumObjCInterfaces);
fprintf(stderr, " %d protocol qualified interface types\n",
NumObjCQualifiedInterfaces);
Fariborz Jahanian
committed
fprintf(stderr, " %d protocol qualified id types\n",
NumObjCQualifiedIds);
fprintf(stderr, " %d typeof types\n", NumTypeOfTypes);
fprintf(stderr, " %d typeof exprs\n", NumTypeOfExprs);
fprintf(stderr, "Total bytes = %d\n", int(NumBuiltin*sizeof(BuiltinType)+
NumComplex*sizeof(ComplexType)+NumVector*sizeof(VectorType)+
NumFunctionP*sizeof(FunctionTypeProto)+
NumFunctionNP*sizeof(FunctionTypeNoProto)+
NumTypeName*sizeof(TypedefType)+NumTagged*sizeof(TagType)+
NumTypeOfTypes*sizeof(TypeOfType)+NumTypeOfExprs*sizeof(TypeOfExpr)));
}
void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
Types.push_back((R = QualType(new BuiltinType(K),0)).getTypePtr());
void ASTContext::InitBuiltinTypes() {
assert(VoidTy.isNull() && "Context reinitialized?");
// C99 6.2.5p19.
Chris Lattner
committed
InitBuiltinType(VoidTy, BuiltinType::Void);
// C99 6.2.5p2.
Chris Lattner
committed
InitBuiltinType(BoolTy, BuiltinType::Bool);
// C99 6.2.5p3.
if (Target.isCharSigned())
Chris Lattner
committed
InitBuiltinType(CharTy, BuiltinType::Char_S);
else
InitBuiltinType(CharTy, BuiltinType::Char_U);
// C99 6.2.5p4.
Chris Lattner
committed
InitBuiltinType(SignedCharTy, BuiltinType::SChar);
InitBuiltinType(ShortTy, BuiltinType::Short);
InitBuiltinType(IntTy, BuiltinType::Int);
InitBuiltinType(LongTy, BuiltinType::Long);
InitBuiltinType(LongLongTy, BuiltinType::LongLong);
// C99 6.2.5p6.
Chris Lattner
committed
InitBuiltinType(UnsignedCharTy, BuiltinType::UChar);
InitBuiltinType(UnsignedShortTy, BuiltinType::UShort);
InitBuiltinType(UnsignedIntTy, BuiltinType::UInt);
InitBuiltinType(UnsignedLongTy, BuiltinType::ULong);
InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong);
// C99 6.2.5p10.
Chris Lattner
committed
InitBuiltinType(FloatTy, BuiltinType::Float);
InitBuiltinType(DoubleTy, BuiltinType::Double);
InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble);
// C++ 3.9.1p5
InitBuiltinType(WCharTy, BuiltinType::WChar);
// Placeholder type for functions.
InitBuiltinType(OverloadTy, BuiltinType::Overload);
// C99 6.2.5p11.
Chris Lattner
committed
FloatComplexTy = getComplexType(FloatTy);
DoubleComplexTy = getComplexType(DoubleTy);
LongDoubleComplexTy = getComplexType(LongDoubleTy);
ObjCIdType = QualType();
ObjCClassType = QualType();
ObjCConstantStringType = QualType();
// void * type
VoidPtrTy = getPointerType(VoidTy);
}
//===----------------------------------------------------------------------===//
// Type Sizing and Analysis
//===----------------------------------------------------------------------===//
/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
/// scalar floating point type.
const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
const BuiltinType *BT = T->getAsBuiltinType();
assert(BT && "Not a floating point type!");
switch (BT->getKind()) {
default: assert(0 && "Not a floating point type!");
case BuiltinType::Float: return Target.getFloatFormat();
case BuiltinType::Double: return Target.getDoubleFormat();
case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
}
}
/// getTypeSize - Return the size of the specified type, in bits. This method
/// does not work on incomplete types.
std::pair<uint64_t, unsigned>
ASTContext::getTypeInfo(QualType T) {
Chris Lattner
committed
T = getCanonicalType(T);
uint64_t Width;
unsigned Align;
switch (T->getTypeClass()) {
Chris Lattner
committed
case Type::TypeName: assert(0 && "Not a canonical type!");
case Type::FunctionNoProto:
case Type::FunctionProto:
assert(0 && "Incomplete types have no size!");
case Type::VariableArray:
assert(0 && "VLAs not implemented yet!");
case Type::ConstantArray: {
ConstantArrayType *CAT = cast<ConstantArrayType>(T);
Chris Lattner
committed
std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
Width = EltInfo.first*CAT->getSize().getZExtValue();
Chris Lattner
committed
Align = EltInfo.second;
break;
Nate Begeman
committed
case Type::ExtVector:
Chris Lattner
committed
case Type::Vector: {
std::pair<uint64_t, unsigned> EltInfo =
getTypeInfo(cast<VectorType>(T)->getElementType());
Width = EltInfo.first*cast<VectorType>(T)->getNumElements();
// FIXME: This isn't right for unusual vectors
Align = Width;
Chris Lattner
committed
break;
}
case Type::Builtin:
switch (cast<BuiltinType>(T)->getKind()) {
default: assert(0 && "Unknown builtin type!");
case BuiltinType::Void:
assert(0 && "Incomplete types have no size!");
Width = Target.getBoolWidth();
Align = Target.getBoolAlign();
case BuiltinType::Char_S:
case BuiltinType::Char_U:
case BuiltinType::UChar:
Width = Target.getCharWidth();
Align = Target.getCharAlign();
case BuiltinType::WChar:
Width = Target.getWCharWidth();
Align = Target.getWCharAlign();
break;
case BuiltinType::UShort:
Width = Target.getShortWidth();
Align = Target.getShortAlign();
case BuiltinType::UInt:
Width = Target.getIntWidth();
Align = Target.getIntAlign();
case BuiltinType::ULong:
Width = Target.getLongWidth();
Align = Target.getLongAlign();
case BuiltinType::ULongLong:
Width = Target.getLongLongWidth();
Align = Target.getLongLongAlign();
Width = Target.getFloatWidth();
Align = Target.getFloatAlign();
Width = Target.getDoubleWidth();
Align = Target.getDoubleAlign();
Width = Target.getLongDoubleWidth();
Align = Target.getLongDoubleAlign();
}
break;
Christopher Lamb
committed
case Type::ASQual:
// FIXME: Pointers into different addr spaces could have different sizes and
// alignment requirements: getPointerInfo should take an AddrSpace.
return getTypeInfo(QualType(cast<ASQualType>(T)->getBaseType(), 0));
case Type::ObjCQualifiedId:
Align = Target.getPointerAlign(0);
Steve Naroff
committed
case Type::BlockPointer: {
unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
Width = Target.getPointerWidth(AS);
Align = Target.getPointerAlign(AS);
break;
}
case Type::Pointer: {
unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
Align = Target.getPointerAlign(AS);
break;
}
case Type::Reference:
// "When applied to a reference or a reference type, the result is the size
// of the referenced type." C++98 5.3.3p2: expr.sizeof.
// FIXME: This is wrong for struct layout: a reference in a struct has
// pointer size.
Chris Lattner
committed
return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
case Type::Complex: {
// Complex types have the same alignment as their elements, but twice the
// size.
std::pair<uint64_t, unsigned> EltInfo =
getTypeInfo(cast<ComplexType>(T)->getElementType());
Width = EltInfo.first*2;
Align = EltInfo.second;
break;
}
case Type::ObjCInterface: {
ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
Width = Layout.getSize();
Align = Layout.getAlignment();
break;
}
case Type::Tagged: {
if (cast<TagType>(T)->getDecl()->isInvalidDecl()) {
Width = 1;
Align = 1;
break;
}
if (EnumType *ET = dyn_cast<EnumType>(cast<TagType>(T)))
return getTypeInfo(ET->getDecl()->getIntegerType());
RecordType *RT = cast<RecordType>(T);
const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
Width = Layout.getSize();
Align = Layout.getAlignment();
}
assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
return std::make_pair(Width, Align);
}
/// LayoutField - Field layout.
void ASTRecordLayout::LayoutField(const FieldDecl *FD, unsigned FieldNo,
bool IsUnion, unsigned StructPacking,
unsigned FieldPacking = StructPacking;
uint64_t FieldOffset = IsUnion ? 0 : Size;
uint64_t FieldSize;
unsigned FieldAlign;
// FIXME: Should this override struct packing? Probably we want to
// take the minimum?
if (const PackedAttr *PA = FD->getAttr<PackedAttr>())
FieldPacking = PA->getAlignment();
if (const Expr *BitWidthExpr = FD->getBitWidth()) {
// TODO: Need to check this algorithm on other targets!
// (tested on Linux-X86)
FieldSize =
BitWidthExpr->getIntegerConstantExprValue(Context).getZExtValue();
std::pair<uint64_t, unsigned> FieldInfo =
Context.getTypeInfo(FD->getType());
uint64_t TypeSize = FieldInfo.first;
// Determine the alignment of this bitfield. The packing
// attributes define a maximum and the alignment attribute defines
// a minimum.
// FIXME: What is the right behavior when the specified alignment
// is smaller than the specified packing?
if (FieldPacking)
FieldAlign = std::min(FieldAlign, FieldPacking);
if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
FieldAlign = std::max(FieldAlign, AA->getAlignment());
// Check if we need to add padding to give the field the correct
// alignment.
if (FieldSize == 0 || (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)
FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
// Padding members don't affect overall alignment
if (!FD->getIdentifier())
FieldAlign = 1;
} else {
if (FD->getType()->isIncompleteArrayType()) {
// This is a flexible array member; we can't directly
// query getTypeInfo about these, so we figure it out here.
// Flexible array members don't have any size, but they
// have to be aligned appropriately for their element type.
FieldSize = 0;
FieldAlign = Context.getTypeAlign(ATy->getElementType());
} else {
std::pair<uint64_t, unsigned> FieldInfo =
Context.getTypeInfo(FD->getType());
FieldSize = FieldInfo.first;
FieldAlign = FieldInfo.second;
}
// Determine the alignment of this bitfield. The packing
// attributes define a maximum and the alignment attribute defines
// a minimum. Additionally, the packing alignment must be at least
// a byte for non-bitfields.
//
// FIXME: What is the right behavior when the specified alignment
// is smaller than the specified packing?
if (FieldPacking)
FieldAlign = std::min(FieldAlign, std::max(8U, FieldPacking));
if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
FieldAlign = std::max(FieldAlign, AA->getAlignment());
// Round up the current record size to the field's alignment boundary.
FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
}
// Place this field at the current location.
FieldOffsets[FieldNo] = FieldOffset;
// Reserve space for this field.
if (IsUnion) {
Size = std::max(Size, FieldSize);
} else {
Size = FieldOffset + FieldSize;
}
// Remember max struct/class alignment.
Alignment = std::max(Alignment, FieldAlign);
}
/// getASTObjcInterfaceLayout - Get or compute information about the layout of
/// the specified Objective C, which indicates its size and ivar
/// position information.
const ASTRecordLayout &
ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
// Look up this layout, if already laid out, return what we have.
const ASTRecordLayout *&Entry = ASTObjCInterfaces[D];
if (Entry) return *Entry;
// Allocate and assign into ASTRecordLayouts here. The "Entry" reference can
// be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
ASTRecordLayout *NewEntry = NULL;
unsigned FieldCount = D->ivar_size();
if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
FieldCount++;
const ASTRecordLayout &SL = getASTObjCInterfaceLayout(SD);
unsigned Alignment = SL.getAlignment();
uint64_t Size = SL.getSize();
NewEntry = new ASTRecordLayout(Size, Alignment);
NewEntry->InitializeLayout(FieldCount);
// Super class is at the beginning of the layout.
NewEntry->SetFieldOffset(0, 0);
} else {
NewEntry = new ASTRecordLayout();
NewEntry->InitializeLayout(FieldCount);
}
unsigned StructPacking = 0;
if (const PackedAttr *PA = D->getAttr<PackedAttr>())
StructPacking = PA->getAlignment();
if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
AA->getAlignment()));
// Layout each ivar sequentially.
unsigned i = 0;
for (ObjCInterfaceDecl::ivar_iterator IVI = D->ivar_begin(),
IVE = D->ivar_end(); IVI != IVE; ++IVI) {
const ObjCIvarDecl* Ivar = (*IVI);
NewEntry->LayoutField(Ivar, i++, false, StructPacking, *this);
}
// Finally, round the size of the total struct up to the alignment of the
// struct itself.
NewEntry->FinalizeLayout();
return *NewEntry;
}
/// getASTRecordLayout - Get or compute information about the layout of the
/// specified record (struct/union/class), which indicates its size and field
/// position information.
const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
Ted Kremenek
committed
D = D->getDefinition(*this);
assert(D && "Cannot get layout of forward declarations!");
// Look up this layout, if already laid out, return what we have.
const ASTRecordLayout *&Entry = ASTRecordLayouts[D];
if (Entry) return *Entry;
// Allocate and assign into ASTRecordLayouts here. The "Entry" reference can
// be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
ASTRecordLayout *NewEntry = new ASTRecordLayout();
Entry = NewEntry;
unsigned StructPacking = 0;
if (const PackedAttr *PA = D->getAttr<PackedAttr>())
StructPacking = PA->getAlignment();
if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
AA->getAlignment()));
// Layout each field, for now, just sequentially, respecting alignment. In
// the future, this will need to be tweakable by targets.
for (unsigned i = 0, e = D->getNumMembers(); i != e; ++i) {
const FieldDecl *FD = D->getMember(i);
NewEntry->LayoutField(FD, i, IsUnion, StructPacking, *this);
// Finally, round the size of the total struct up to the alignment of the
// struct itself.
return *NewEntry;
}
//===----------------------------------------------------------------------===//
// Type creation/memoization methods
//===----------------------------------------------------------------------===//
Christopher Lamb
committed
QualType ASTContext::getASQualType(QualType T, unsigned AddressSpace) {
Chris Lattner
committed
QualType CanT = getCanonicalType(T);
if (CanT.getAddressSpace() == AddressSpace)
return T;
// Type's cannot have multiple ASQuals, therefore we know we only have to deal
// with CVR qualifiers from here on out.
Chris Lattner
committed
assert(CanT.getAddressSpace() == 0 &&
"Type is already address space qualified");
// Check if we've already instantiated an address space qual'd type of this
// type.
Christopher Lamb
committed
llvm::FoldingSetNodeID ID;
ASQualType::Profile(ID, T.getTypePtr(), AddressSpace);
Christopher Lamb
committed
void *InsertPos = 0;
if (ASQualType *ASQy = ASQualTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(ASQy, 0);
// If the base type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!T->isCanonical()) {
Chris Lattner
committed
Canonical = getASQualType(CanT, AddressSpace);
Christopher Lamb
committed
// Get the new insert position for the node we care about.
ASQualType *NewIP = ASQualTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
Christopher Lamb
committed
}
ASQualType *New = new ASQualType(T.getTypePtr(), Canonical, AddressSpace);
Christopher Lamb
committed
ASQualTypes.InsertNode(New, InsertPos);
Types.push_back(New);
return QualType(New, T.getCVRQualifiers());
Christopher Lamb
committed
}
Chris Lattner
committed
/// getComplexType - Return the uniqued reference to the type for a complex
/// number with the specified element type.
QualType ASTContext::getComplexType(QualType T) {
// Unique pointers, to guarantee there is only one pointer of a particular
// structure.
llvm::FoldingSetNodeID ID;
ComplexType::Profile(ID, T);
void *InsertPos = 0;
if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(CT, 0);
// If the pointee type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!T->isCanonical()) {
Chris Lattner
committed
Canonical = getComplexType(getCanonicalType(T));
Chris Lattner
committed
// Get the new insert position for the node we care about.
ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
Chris Lattner
committed
}
ComplexType *New = new ComplexType(T, Canonical);
Types.push_back(New);
ComplexTypes.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getPointerType - Return the uniqued reference to the type for a pointer to
/// the specified type.
// Unique pointers, to guarantee there is only one pointer of a particular
// structure.
Chris Lattner
committed
llvm::FoldingSetNodeID ID;
PointerType::Profile(ID, T);
void *InsertPos = 0;
if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
Chris Lattner
committed
// If the pointee type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
if (!T->isCanonical()) {
Chris Lattner
committed
Canonical = getPointerType(getCanonicalType(T));
// Get the new insert position for the node we care about.
PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
}
PointerType *New = new PointerType(T, Canonical);
Types.push_back(New);
PointerTypes.InsertNode(New, InsertPos);
/// getBlockPointerType - Return the uniqued reference to the type for
/// a pointer to the specified block.
QualType ASTContext::getBlockPointerType(QualType T) {
assert(T->isFunctionType() && "block of function types only");
// Unique pointers, to guarantee there is only one block of a particular
// structure.
llvm::FoldingSetNodeID ID;
BlockPointerType::Profile(ID, T);
void *InsertPos = 0;
if (BlockPointerType *PT =
BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(PT, 0);
// If the block pointee type isn't canonical, this won't be a canonical
// type either so fill in the canonical type field.
QualType Canonical;
if (!T->isCanonical()) {
Canonical = getBlockPointerType(getCanonicalType(T));
// Get the new insert position for the node we care about.
BlockPointerType *NewIP =
BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
}
BlockPointerType *New = new BlockPointerType(T, Canonical);
Types.push_back(New);
BlockPointerTypes.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getReferenceType - Return the uniqued reference to the type for a reference
/// to the specified type.
QualType ASTContext::getReferenceType(QualType T) {
// Unique pointers, to guarantee there is only one pointer of a particular
// structure.
Chris Lattner
committed
llvm::FoldingSetNodeID ID;
ReferenceType::Profile(ID, T);
void *InsertPos = 0;
if (ReferenceType *RT = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(RT, 0);
// If the referencee type isn't canonical, this won't be a canonical type
// either, so fill in the canonical type field.
QualType Canonical;
if (!T->isCanonical()) {
Chris Lattner
committed
Canonical = getReferenceType(getCanonicalType(T));
// Get the new insert position for the node we care about.
ReferenceType *NewIP = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
}
ReferenceType *New = new ReferenceType(T, Canonical);
Types.push_back(New);
ReferenceTypes.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getConstantArrayType - Return the unique reference to the type for an
/// array of the specified element type.
QualType ASTContext::getConstantArrayType(QualType EltTy,
Steve Naroff
committed
const llvm::APInt &ArySize,
ArrayType::ArraySizeModifier ASM,
unsigned EltTypeQuals) {
Chris Lattner
committed
llvm::FoldingSetNodeID ID;
void *InsertPos = 0;
if (ConstantArrayType *ATP =
ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
Chris Lattner
committed
// If the element type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
if (!EltTy->isCanonical()) {
Chris Lattner
committed
Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
Steve Naroff
committed
ASM, EltTypeQuals);
// Get the new insert position for the node we care about.
ConstantArrayType *NewIP =
ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
}
Chris Lattner
committed
Steve Naroff
committed
ConstantArrayType *New = new ConstantArrayType(EltTy, Canonical, ArySize,
ASM, EltTypeQuals);
ConstantArrayTypes.InsertNode(New, InsertPos);
Types.push_back(New);
Chris Lattner
committed
}
/// getVariableArrayType - Returns a non-unique reference to the type for a
/// variable array of the specified element type.
Steve Naroff
committed
QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts,
ArrayType::ArraySizeModifier ASM,
unsigned EltTypeQuals) {
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
// Since we don't unique expressions, it isn't possible to unique VLA's
// that have an expression provided for their size.
VariableArrayType *New = new VariableArrayType(EltTy, QualType(), NumElts,
ASM, EltTypeQuals);
VariableArrayTypes.push_back(New);
Types.push_back(New);
return QualType(New, 0);
}
QualType ASTContext::getIncompleteArrayType(QualType EltTy,
ArrayType::ArraySizeModifier ASM,
unsigned EltTypeQuals) {
llvm::FoldingSetNodeID ID;
IncompleteArrayType::Profile(ID, EltTy);
void *InsertPos = 0;
if (IncompleteArrayType *ATP =
IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(ATP, 0);
// If the element type isn't canonical, this won't be a canonical type
// either, so fill in the canonical type field.
QualType Canonical;
if (!EltTy->isCanonical()) {
Chris Lattner
committed
Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
ASM, EltTypeQuals);
// Get the new insert position for the node we care about.
IncompleteArrayType *NewIP =
IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
IncompleteArrayType *New = new IncompleteArrayType(EltTy, Canonical,
ASM, EltTypeQuals);
IncompleteArrayTypes.InsertNode(New, InsertPos);
Types.push_back(New);
return QualType(New, 0);
/// getVectorType - Return the unique reference to a vector type of
/// the specified element type and size. VectorType must be a built-in type.
QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
Chris Lattner
committed
baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
// Check if we've already instantiated a vector of this type.
llvm::FoldingSetNodeID ID;
void *InsertPos = 0;
if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(VTP, 0);
// If the element type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!vecType->isCanonical()) {
Chris Lattner
committed
Canonical = getVectorType(getCanonicalType(vecType), NumElts);
// Get the new insert position for the node we care about.
VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
}
VectorType *New = new VectorType(vecType, NumElts, Canonical);
VectorTypes.InsertNode(New, InsertPos);
Types.push_back(New);
return QualType(New, 0);
}
Nate Begeman
committed
/// getExtVectorType - Return the unique reference to an extended vector type of
/// the specified element type and size. VectorType must be a built-in type.
Nate Begeman
committed
QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
Chris Lattner
committed
baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
Nate Begeman
committed
assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
// Check if we've already instantiated a vector of this type.
llvm::FoldingSetNodeID ID;
Nate Begeman
committed
VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);
void *InsertPos = 0;
if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(VTP, 0);
// If the element type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!vecType->isCanonical()) {
Nate Begeman
committed
Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
// Get the new insert position for the node we care about.
VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
Nate Begeman
committed
ExtVectorType *New = new ExtVectorType(vecType, NumElts, Canonical);
VectorTypes.InsertNode(New, InsertPos);
Types.push_back(New);
return QualType(New, 0);
}
Chris Lattner
committed
/// getFunctionTypeNoProto - Return a K&R style C function type like 'int()'.
///
Chris Lattner
committed
// Unique functions, to guarantee there is only one function of a particular
// structure.
Chris Lattner
committed
llvm::FoldingSetNodeID ID;
Chris Lattner
committed
FunctionTypeNoProto::Profile(ID, ResultTy);
void *InsertPos = 0;
if (FunctionTypeNoProto *FT =
FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos))
Chris Lattner
committed
Chris Lattner
committed
if (!ResultTy->isCanonical()) {
Chris Lattner
committed
Canonical = getFunctionTypeNoProto(getCanonicalType(ResultTy));
Chris Lattner
committed
// Get the new insert position for the node we care about.
FunctionTypeNoProto *NewIP =
FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
Chris Lattner
committed
}
Chris Lattner
committed
Chris Lattner
committed
FunctionTypeNoProto *New = new FunctionTypeNoProto(ResultTy, Canonical);
Types.push_back(New);
FunctionTypeNoProtos.InsertNode(New, InsertPos);
Chris Lattner
committed
}
/// getFunctionType - Return a normal function type with a typed argument
/// list. isVariadic indicates whether the argument list includes '...'.
QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
Chris Lattner
committed
// Unique functions, to guarantee there is only one function of a particular
// structure.
Chris Lattner
committed
llvm::FoldingSetNodeID ID;
FunctionTypeProto::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic);
void *InsertPos = 0;
if (FunctionTypeProto *FTP =
FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos))
Chris Lattner
committed
// Determine whether the type being created is already canonical or not.
bool isCanonical = ResultTy->isCanonical();
for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
if (!ArgArray[i]->isCanonical())
isCanonical = false;
// If this type isn't canonical, get the canonical version of it.
Chris Lattner
committed
if (!isCanonical) {
Chris Lattner
committed
llvm::SmallVector<QualType, 16> CanonicalArgs;
Chris Lattner
committed
CanonicalArgs.reserve(NumArgs);
for (unsigned i = 0; i != NumArgs; ++i)
Chris Lattner
committed
CanonicalArgs.push_back(getCanonicalType(ArgArray[i]));
Chris Lattner
committed
Chris Lattner
committed
Canonical = getFunctionType(getCanonicalType(ResultTy),
Chris Lattner
committed
&CanonicalArgs[0], NumArgs,
// Get the new insert position for the node we care about.
FunctionTypeProto *NewIP =
FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos);
assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
Chris Lattner
committed
}
// FunctionTypeProto objects are not allocated with new because they have a
// variable size array (for parameter types) at the end of them.
FunctionTypeProto *FTP =
(FunctionTypeProto*)malloc(sizeof(FunctionTypeProto) +
NumArgs*sizeof(QualType));
Chris Lattner
committed
new (FTP) FunctionTypeProto(ResultTy, ArgArray, NumArgs, isVariadic,
Canonical);
Types.push_back(FTP);
FunctionTypeProtos.InsertNode(FTP, InsertPos);
Chris Lattner
committed
}
Douglas Gregor
committed
/// getTypeDeclType - Return the unique reference to the type for the
/// specified type declaration.
Ted Kremenek
committed
QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
assert(Decl && "Passed null for Decl param");
Douglas Gregor
committed
if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
Douglas Gregor
committed
return getTypedefType(Typedef);
else if (ObjCInterfaceDecl *ObjCInterface = dyn_cast<ObjCInterfaceDecl>(Decl))
Douglas Gregor
committed
return getObjCInterfaceType(ObjCInterface);
if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Decl)) {
Ted Kremenek
committed
Decl->TypeForDecl = PrevDecl ? PrevDecl->TypeForDecl
: new CXXRecordType(CXXRecord);
}
else if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
Ted Kremenek
committed
Decl->TypeForDecl = PrevDecl ? PrevDecl->TypeForDecl
: new RecordType(Record);
}
else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl))
Douglas Gregor
committed
Decl->TypeForDecl = new EnumType(Enum);
Douglas Gregor
committed
assert(false && "TypeDecl without a type?");
Ted Kremenek
committed
if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
Douglas Gregor
committed
}
Ted Kremenek
committed
/// setTagDefinition - Used by RecordDecl::defineBody to inform ASTContext
/// about which RecordDecl serves as the definition of a particular
/// struct/union/class. This will eventually be used by enums as well.
void ASTContext::setTagDefinition(TagDecl* D) {
assert (D->isDefinition());
cast<TagType>(D->TypeForDecl)->decl = D;
}
/// getTypedefType - Return the unique reference to the type for the
/// specified typename decl.
QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
Chris Lattner
committed
QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
Fariborz Jahanian
committed
Decl->TypeForDecl = new TypedefType(Type::TypeName, Decl, Canonical);
Types.push_back(Decl->TypeForDecl);
}
/// getObjCInterfaceType - Return the unique reference to the type for the
QualType ASTContext::getObjCInterfaceType(ObjCInterfaceDecl *Decl) {
Decl->TypeForDecl = new ObjCInterfaceType(Type::ObjCInterface, Decl);
Types.push_back(Decl->TypeForDecl);
return QualType(Decl->TypeForDecl, 0);
}
/// CmpProtocolNames - Comparison predicate for sorting protocols
/// alphabetically.
static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
const ObjCProtocolDecl *RHS) {
return strcmp(LHS->getName(), RHS->getName()) < 0;
}
static void SortAndUniqueProtocols(ObjCProtocolDecl **&Protocols,
unsigned &NumProtocols) {
ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;