Newer
Older
Gabor Greif
committed
V1IsSplat = isSplatVector(V1.getNode());
V2IsSplat = isSplatVector(V2.getNode());
// Canonicalize the splat or undef, if present, to be on the RHS.
if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
Op = CommuteVectorShuffle(SVOp, DAG);
SVOp = cast<ShuffleVectorSDNode>(Op);
V1 = SVOp->getOperand(0);
V2 = SVOp->getOperand(1);
std::swap(V1IsSplat, V2IsSplat);
std::swap(V1IsUndef, V2IsUndef);
Commuted = true;
if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
// Shuffling low element of v1 into undef, just return v1.
if (V2IsUndef)
return V1;
// If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
// the instruction selector will not match, so get a canonical MOVL with
// swapped operands to undo the commute.
return getMOVL(DAG, dl, VT, V2, V1);
Evan Cheng
committed
}
Evan Cheng
committed
if (X86::isUNPCKL_v_undef_Mask(SVOp) ||
X86::isUNPCKH_v_undef_Mask(SVOp) ||
X86::isUNPCKLMask(SVOp) ||
X86::isUNPCKHMask(SVOp))
Evan Cheng
committed
return Op;
if (V2IsSplat) {
// Normalize mask so all entries that point to V2 points to its first
// element then try to match unpck{h|l} again. If match, return a
// new vector_shuffle with the corrected mask.
SDValue NewMask = NormalizeMask(SVOp, DAG);
ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
if (NSVOp != SVOp) {
if (X86::isUNPCKLMask(NSVOp, true)) {
return NewMask;
} else if (X86::isUNPCKHMask(NSVOp, true)) {
return NewMask;
}
}
}
if (Commuted) {
// Commute is back and try unpck* again.
// FIXME: this seems wrong.
SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
if (X86::isUNPCKL_v_undef_Mask(NewSVOp) ||
X86::isUNPCKH_v_undef_Mask(NewSVOp) ||
X86::isUNPCKLMask(NewSVOp) ||
X86::isUNPCKHMask(NewSVOp))
return NewOp;
}
// FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
Evan Cheng
committed
// Normalize the node to match x86 shuffle ops if needed
if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
return CommuteVectorShuffle(SVOp, DAG);
// Check for legal shuffle and return?
SmallVector<int, 16> PermMask;
SVOp->getMask(PermMask);
if (isShuffleMaskLegal(PermMask, VT))
return Op;
// Handle v8i16 specifically since SSE can do byte extraction and insertion.
if (VT == MVT::v8i16) {
SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(SVOp, DAG, *this);
Gabor Greif
committed
if (NewOp.getNode())
return NewOp;
}
SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
if (NewOp.getNode())
return NewOp;
}
Evan Cheng
committed
// Handle all 4 wide cases with a number of shuffles except for MMX.
if (NumElems == 4 && !isMMX)
return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
SDValue
X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
MVT VT = Op.getValueType();
DebugLoc dl = Op.getDebugLoc();
if (VT.getSizeInBits() == 8) {
SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
Op.getOperand(0), Op.getOperand(1));
SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
} else if (VT.getSizeInBits() == 16) {
unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
// If Idx is 0, it's cheaper to do a move instead of a pextrw.
if (Idx == 0)
return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
DAG.getNode(ISD::BIT_CONVERT, dl,
MVT::v4i32,
Op.getOperand(0)),
Op.getOperand(1)));
SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
Op.getOperand(0), Op.getOperand(1));
SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
Evan Cheng
committed
} else if (VT == MVT::f32) {
// EXTRACTPS outputs to a GPR32 register which will require a movd to copy
// the result back to FR32 register. It's only worth matching if the
// result has a single use which is a store or a bitcast to i32. And in
// the case of a store, it's not worth it if the index is a constant 0,
// because a MOVSSmr can be used instead, which is smaller and faster.
Evan Cheng
committed
if (!Op.hasOneUse())
Gabor Greif
committed
SDNode *User = *Op.getNode()->use_begin();
if ((User->getOpcode() != ISD::STORE ||
(isa<ConstantSDNode>(Op.getOperand(1)) &&
cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
(User->getOpcode() != ISD::BIT_CONVERT ||
User->getValueType(0) != MVT::i32))
SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
Op.getOperand(0)),
Op.getOperand(1));
return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
} else if (VT == MVT::i32) {
// ExtractPS works with constant index.
if (isa<ConstantSDNode>(Op.getOperand(1)))
return Op;
SDValue
X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
if (!isa<ConstantSDNode>(Op.getOperand(1)))
Evan Cheng
committed
if (Subtarget->hasSSE41()) {
SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
Gabor Greif
committed
if (Res.getNode())
Evan Cheng
committed
return Res;
}
MVT VT = Op.getValueType();
DebugLoc dl = Op.getDebugLoc();
// TODO: handle v16i8.
if (VT.getSizeInBits() == 16) {
unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
if (Idx == 0)
return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
DAG.getNode(ISD::BIT_CONVERT, dl,
Op.getOperand(1)));
// Transform it so it match pextrw which produces a 32-bit result.
MVT EVT = (MVT::SimpleValueType)(VT.getSimpleVT()+1);
SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EVT,
Op.getOperand(0), Op.getOperand(1));
SDValue Assert = DAG.getNode(ISD::AssertZext, dl, EVT, Extract,
DAG.getValueType(VT));
return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
} else if (VT.getSizeInBits() == 32) {
unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
if (Idx == 0)
return Op;
// SHUFPS the element to the lowest double word, then movss.
int Mask[4] = { Idx, -1, -1, -1 };
MVT VVT = Op.getOperand(0).getValueType();
SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
DAG.getUNDEF(VVT), Mask);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
DAG.getIntPtrConstant(0));
} else if (VT.getSizeInBits() == 64) {
// FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
// FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
// to match extract_elt for f64.
unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
if (Idx == 0)
return Op;
// UNPCKHPD the element to the lowest double word, then movsd.
// Note if the lower 64 bits of the result of the UNPCKHPD is then stored
// to a f64mem, the whole operation is folded into a single MOVHPDmr.
int Mask[2] = { 1, -1 };
MVT VVT = Op.getOperand(0).getValueType();
SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
DAG.getUNDEF(VVT), Mask);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
DAG.getIntPtrConstant(0));
SDValue
X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
MVT VT = Op.getValueType();
MVT EVT = VT.getVectorElementType();
DebugLoc dl = Op.getDebugLoc();
SDValue N0 = Op.getOperand(0);
SDValue N1 = Op.getOperand(1);
SDValue N2 = Op.getOperand(2);
if ((EVT.getSizeInBits() == 8 || EVT.getSizeInBits() == 16) &&
isa<ConstantSDNode>(N2)) {
unsigned Opc = (EVT.getSizeInBits() == 8) ? X86ISD::PINSRB
// Transform it so it match pinsr{b,w} which expects a GR32 as its second
// argument.
if (N1.getValueType() != MVT::i32)
N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
if (N2.getValueType() != MVT::i32)
N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
return DAG.getNode(Opc, dl, VT, N0, N1, N2);
} else if (EVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
// Bits [7:6] of the constant are the source select. This will always be
// zero here. The DAG Combiner may combine an extract_elt index into these
// bits. For example (insert (extract, 3), 2) could be matched by putting
// the '3' into bits [7:6] of X86ISD::INSERTPS.
// Bits [5:4] of the constant are the destination select. This is the
// value of the incoming immediate.
// Bits [3:0] of the constant are the zero mask. The DAG Combiner may
// combine either bitwise AND or insert of float 0.0 to set these bits.
N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
} else if (EVT == MVT::i32) {
// InsertPS works with constant index.
if (isa<ConstantSDNode>(N2))
return Op;
SDValue
X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
MVT VT = Op.getValueType();
MVT EVT = VT.getVectorElementType();
if (Subtarget->hasSSE41())
return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
if (EVT == MVT::i8)
DebugLoc dl = Op.getDebugLoc();
SDValue N0 = Op.getOperand(0);
SDValue N1 = Op.getOperand(1);
SDValue N2 = Op.getOperand(2);
if (EVT.getSizeInBits() == 16) {
// Transform it so it match pinsrw which expects a 16-bit value in a GR32
// as its second argument.
if (N1.getValueType() != MVT::i32)
N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
if (N2.getValueType() != MVT::i32)
N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
SDValue
X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
DebugLoc dl = Op.getDebugLoc();
if (Op.getValueType() == MVT::v2f32)
return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f32,
DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i32,
DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
MVT VT = MVT::v2i32;
switch (Op.getValueType().getSimpleVT()) {
default: break;
case MVT::v16i8:
case MVT::v8i16:
VT = MVT::v4i32;
break;
}
return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
Bill Wendling
committed
// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
// one of the above mentioned nodes. It has to be wrapped because otherwise
// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
// be used to form addressing mode. These wrapped nodes will be selected
// into MOV32ri.
SDValue
X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
// FIXME there isn't really any debug info here, should come from the parent
DebugLoc dl = CP->getDebugLoc();
Evan Cheng
committed
SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
CP->getAlignment());
Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
// With PIC, the address is actually $g + Offset.
if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
!Subtarget->isPICStyleRIPRel()) {
Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
DAG.getNode(X86ISD::GlobalBaseReg,
DebugLoc::getUnknownLoc(),
getPointerTy()),
}
return Result;
}
X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
int64_t Offset,
Evan Cheng
committed
SelectionDAG &DAG) const {
bool IsPic = getTargetMachine().getRelocationModel() == Reloc::PIC_;
bool ExtraLoadRequired =
Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false);
// Create the TargetGlobalAddress node, folding in the constant
// offset if it is legal.
SDValue Result;
if (!IsPic && !ExtraLoadRequired && isInt32(Offset)) {
Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
Offset = 0;
} else
Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0);
Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
// With PIC, the address is actually $g + Offset.
if (IsPic && !Subtarget->isPICStyleRIPRel()) {
Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
Anton Korobeynikov
committed
// For Darwin & Mingw32, external and weak symbols are indirect, so we want to
// load the value at address GV, not the value of GV itself. This means that
// the GlobalAddress must be in the base or index register of the address, not
// the GV offset field. Platform check is inside GVRequiresExtraLoad() call
// The same applies for external symbols during PIC codegen
if (ExtraLoadRequired)
Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
PseudoSourceValue::getGOT(), 0);
// If there was a non-zero offset that we didn't fold, create an explicit
// addition for it.
if (Offset != 0)
Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
DAG.getConstant(Offset, getPointerTy()));
return Result;
}
Evan Cheng
committed
SDValue
X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
Evan Cheng
committed
}
static SDValue
GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
Rafael Espindola
committed
SDValue *InFlag, const MVT PtrVT, unsigned ReturnReg) {
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
DebugLoc dl = GA->getDebugLoc();
SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
GA->getValueType(0),
GA->getOffset());
if (InFlag) {
SDValue Ops[] = { Chain, TGA, *InFlag };
Rafael Espindola
committed
Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
} else {
SDValue Ops[] = { Chain, TGA };
Rafael Espindola
committed
Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
Rafael Espindola
committed
SDValue Flag = Chain.getValue(1);
return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
Anton Korobeynikov
committed
// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
Anton Korobeynikov
committed
LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
DebugLoc dl = GA->getDebugLoc(); // ? function entry point might be better
SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
Lauro Ramos Venancio
committed
DAG.getNode(X86ISD::GlobalBaseReg,
DebugLoc::getUnknownLoc(),
Lauro Ramos Venancio
committed
PtrVT), InFlag);
InFlag = Chain.getValue(1);
Rafael Espindola
committed
return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX);
Lauro Ramos Venancio
committed
}
Anton Korobeynikov
committed
// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
Anton Korobeynikov
committed
LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
Rafael Espindola
committed
return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, X86::RAX);
Anton Korobeynikov
committed
}
Lauro Ramos Venancio
committed
// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
// "local exec" model.
static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
const MVT PtrVT, TLSModel::Model model,
bool is64Bit) {
DebugLoc dl = GA->getDebugLoc();
Lauro Ramos Venancio
committed
// Get the Thread Pointer
SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress,
DebugLoc::getUnknownLoc(), PtrVT,
DAG.getRegister(is64Bit? X86::FS : X86::GS,
MVT::i32));
SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base,
NULL, 0);
Lauro Ramos Venancio
committed
// emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
// exec)
SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
Lauro Ramos Venancio
committed
GA->getValueType(0),
GA->getOffset());
SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, PtrVT, TGA);
Lauro Ramos Venancio
committed
Rafael Espindola
committed
if (model == TLSModel::InitialExec)
Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
PseudoSourceValue::getGOT(), 0);
Lauro Ramos Venancio
committed
Lauro Ramos Venancio
committed
// The address of the thread local variable is the add of the thread
// pointer with the offset of the variable.
return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
Lauro Ramos Venancio
committed
}
SDValue
X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
Lauro Ramos Venancio
committed
// TODO: implement the "local dynamic" model
// TODO: implement the "initial exec"model for pic executables
Anton Korobeynikov
committed
assert(Subtarget->isTargetELF() &&
"TLS not implemented for non-ELF targets");
Lauro Ramos Venancio
committed
GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
Rafael Espindola
committed
GlobalValue *GV = GA->getGlobal();
TLSModel::Model model =
getTLSModel (GV, getTargetMachine().getRelocationModel());
Anton Korobeynikov
committed
if (Subtarget->is64Bit()) {
Rafael Espindola
committed
switch (model) {
case TLSModel::GeneralDynamic:
case TLSModel::LocalDynamic: // not implemented
return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
case TLSModel::InitialExec:
case TLSModel::LocalExec:
return LowerToTLSExecModel(GA, DAG, getPointerTy(), model, true);
Rafael Espindola
committed
}
Anton Korobeynikov
committed
} else {
Rafael Espindola
committed
switch (model) {
case TLSModel::GeneralDynamic:
case TLSModel::LocalDynamic: // not implemented
Anton Korobeynikov
committed
return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
Rafael Espindola
committed
case TLSModel::InitialExec:
case TLSModel::LocalExec:
return LowerToTLSExecModel(GA, DAG, getPointerTy(), model, false);
Rafael Espindola
committed
}
Anton Korobeynikov
committed
}
assert(0 && "Unreachable");
return SDValue();
Lauro Ramos Venancio
committed
}
SDValue
X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) {
// FIXME there isn't really any debug info here
DebugLoc dl = Op.getDebugLoc();
Bill Wendling
committed
const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
// With PIC, the address is actually $g + Offset.
if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
!Subtarget->isPICStyleRIPRel()) {
Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
DAG.getNode(X86ISD::GlobalBaseReg,
DebugLoc::getUnknownLoc(),
getPointerTy()),
Result);
}
return Result;
}
SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
// FIXME there isn't really any debug into here
DebugLoc dl = JT->getDebugLoc();
SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
// With PIC, the address is actually $g + Offset.
if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
!Subtarget->isPICStyleRIPRel()) {
Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
DAG.getNode(X86ISD::GlobalBaseReg,
DebugLoc::getUnknownLoc(),
getPointerTy()),
}
return Result;
}
/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
/// take a 2 x i32 value to shift plus a shift amount.
SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
assert(Op.getNumOperands() == 3 && "Not a double-shift!");
MVT VT = Op.getValueType();
unsigned VTBits = VT.getSizeInBits();
DebugLoc dl = Op.getDebugLoc();
bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
SDValue ShOpLo = Op.getOperand(0);
SDValue ShOpHi = Op.getOperand(1);
SDValue ShAmt = Op.getOperand(2);
SDValue Tmp1 = isSRA ?
DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
DAG.getConstant(VTBits - 1, MVT::i8)) :
DAG.getConstant(0, VT);
if (Op.getOpcode() == ISD::SHL_PARTS) {
Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
DAG.getConstant(VTBits, MVT::i8));
SDValue Cond = DAG.getNode(X86ISD::CMP, dl, VT,
AndNode, DAG.getConstant(0, MVT::i8));
SDValue Hi, Lo;
SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
if (Op.getOpcode() == ISD::SHL_PARTS) {
Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
return DAG.getMergeValues(Ops, 2, dl);
SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
MVT SrcVT = Op.getOperand(0).getValueType();
if (SrcVT.isVector()) {
if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) {
return Op;
}
return SDValue();
}
assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
"Unknown SINT_TO_FP to lower!");
// These are really Legal; return the operand so the caller accepts it as
// Legal.
if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
return Op;
if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
Subtarget->is64Bit()) {
return Op;
}
DebugLoc dl = Op.getDebugLoc();
unsigned Size = SrcVT.getSizeInBits()/8;
MachineFunction &MF = DAG.getMachineFunction();
int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
StackSlot,
PseudoSourceValue::getFixedStack(SSFI), 0);
return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
}
SDValue X86TargetLowering::BuildFILD(SDValue Op, MVT SrcVT, SDValue Chain,
SDValue StackSlot,
SelectionDAG &DAG) {
// Build the FILD
DebugLoc dl = Op.getDebugLoc();
SDVTList Tys;
bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
else
Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
Ops.push_back(Chain);
Ops.push_back(StackSlot);
Ops.push_back(DAG.getValueType(SrcVT));
SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
Tys, &Ops[0], Ops.size());
Chain = Result.getValue(1);
// FIXME: Currently the FST is flagged to the FILD_FLAG. This
// shouldn't be necessary except that RFP cannot be live across
// multiple blocks. When stackifier is fixed, they can be uncoupled.
MachineFunction &MF = DAG.getMachineFunction();
int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
Tys = DAG.getVTList(MVT::Other);
Ops.push_back(Result);
Ops.push_back(StackSlot);
Ops.push_back(DAG.getValueType(Op.getValueType()));
Ops.push_back(InFlag);
Chain = DAG.getNode(X86ISD::FST, dl, Tys, &Ops[0], Ops.size());
Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
PseudoSourceValue::getFixedStack(SSFI), 0);
}
return Result;
}
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) {
// This algorithm is not obvious. Here it is in C code, more or less:
/*
double uint64_to_double( uint32_t hi, uint32_t lo ) {
static const __m128i exp = { 0x4330000045300000ULL, 0 };
static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
// Copy ints to xmm registers.
__m128i xh = _mm_cvtsi32_si128( hi );
__m128i xl = _mm_cvtsi32_si128( lo );
// Combine into low half of a single xmm register.
__m128i x = _mm_unpacklo_epi32( xh, xl );
__m128d d;
double sd;
// Merge in appropriate exponents to give the integer bits the right
// magnitude.
x = _mm_unpacklo_epi32( x, exp );
// Subtract away the biases to deal with the IEEE-754 double precision
// implicit 1.
d = _mm_sub_pd( (__m128d) x, bias );
// All conversions up to here are exact. The correctly rounded result is
// calculated using the current rounding mode using the following
// horizontal add.
d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
_mm_store_sd( &sd, d ); // Because we are returning doubles in XMM, this
// store doesn't really need to be here (except
// maybe to zero the other double)
return sd;
}
*/
DebugLoc dl = Op.getDebugLoc();
// Build some magic constants.
std::vector<Constant*> CV0;
CV0.push_back(ConstantInt::get(APInt(32, 0x45300000)));
CV0.push_back(ConstantInt::get(APInt(32, 0x43300000)));
CV0.push_back(ConstantInt::get(APInt(32, 0)));
CV0.push_back(ConstantInt::get(APInt(32, 0)));
Constant *C0 = ConstantVector::get(CV0);
Evan Cheng
committed
SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
std::vector<Constant*> CV1;
CV1.push_back(ConstantFP::get(APFloat(APInt(64, 0x4530000000000000ULL))));
CV1.push_back(ConstantFP::get(APFloat(APInt(64, 0x4330000000000000ULL))));
Constant *C1 = ConstantVector::get(CV1);
Evan Cheng
committed
SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
Op.getOperand(0),
DAG.getIntPtrConstant(1)));
SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
Op.getOperand(0),
DAG.getIntPtrConstant(0)));
SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
PseudoSourceValue::getConstantPool(), 0,
false, 16);
SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
PseudoSourceValue::getConstantPool(), 0,
false, 16);
SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
// Add the halves; easiest way is to swap them into another reg first.
int ShufMask[2] = { 1, -1 };
SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
DAG.getUNDEF(MVT::v2f64), ShufMask);
SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
DAG.getIntPtrConstant(0));
}
// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) {
DebugLoc dl = Op.getDebugLoc();
// FP constant to bias correct the final result.
SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
MVT::f64);
// Load the 32-bit value into an XMM register.
SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
Op.getOperand(0),
DAG.getIntPtrConstant(0)));
Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
DAG.getIntPtrConstant(0));
// Or the load with the bias.
SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
Evan Cheng
committed
MVT::v2f64, Load)),
DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
Evan Cheng
committed
MVT::v2f64, Bias)));
Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
DAG.getIntPtrConstant(0));
// Subtract the bias.
SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
// Handle final rounding.
MVT DestVT = Op.getValueType();
if (DestVT.bitsLT(MVT::f64)) {
return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
DAG.getIntPtrConstant(0));
} else if (DestVT.bitsGT(MVT::f64)) {
return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
}
SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
SDValue N0 = Op.getOperand(0);
DebugLoc dl = Op.getDebugLoc();
// Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't
// optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
// the optimization here.
if (DAG.SignBitIsZero(N0))
return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
MVT SrcVT = N0.getValueType();
if (SrcVT == MVT::i64) {
// We only handle SSE2 f64 target here; caller can expand the rest.
if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64)
return SDValue();
return LowerUINT_TO_FP_i64(Op, DAG);
} else if (SrcVT == MVT::i32 && X86ScalarSSEf64) {
return LowerUINT_TO_FP_i32(Op, DAG);
}
assert(SrcVT == MVT::i32 && "Unknown UINT_TO_FP to lower!");
// Make a 64-bit buffer, and use it to build an FILD.
SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
SDValue WordOff = DAG.getConstant(4, getPointerTy());
SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
getPointerTy(), StackSlot, WordOff);
SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
StackSlot, NULL, 0);
SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
OffsetSlot, NULL, 0);
return BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
}
std::pair<SDValue,SDValue> X86TargetLowering::
FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) {
DebugLoc dl = Op.getDebugLoc();
MVT DstTy = Op.getValueType();
if (!IsSigned) {
assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
DstTy = MVT::i64;
}
assert(DstTy.getSimpleVT() <= MVT::i64 &&
DstTy.getSimpleVT() >= MVT::i16 &&
"Unknown FP_TO_SINT to lower!");
// These are really Legal.
if (DstTy == MVT::i32 &&
isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
if (Subtarget->is64Bit() &&
DstTy == MVT::i64 &&
isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
// We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
// stack slot.
MachineFunction &MF = DAG.getMachineFunction();
unsigned MemSize = DstTy.getSizeInBits()/8;
int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
unsigned Opc;
switch (DstTy.getSimpleVT()) {
default: assert(0 && "Invalid FP_TO_SINT to lower!");
case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
}
SDValue Chain = DAG.getEntryNode();
SDValue Value = Op.getOperand(0);
if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
Chain = DAG.getStore(Chain, dl, Value, StackSlot,
PseudoSourceValue::getFixedStack(SSFI), 0);
SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
};
Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
Chain = Value.getValue(1);
SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
// Build the FP_TO_INT*_IN_MEM
SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
if (Op.getValueType().isVector()) {
if (Op.getValueType() == MVT::v2i32 &&
Op.getOperand(0).getValueType() == MVT::v2f64) {
return Op;
}
return SDValue();
}
std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
SDValue FIST = Vals.first, StackSlot = Vals.second;
// If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
if (FIST.getNode() == 0) return Op;
return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) {
std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
SDValue FIST = Vals.first, StackSlot = Vals.second;
assert(FIST.getNode() && "Unexpected failure");
// Load the result.
return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
FIST, StackSlot, NULL, 0);
}
SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) {
DebugLoc dl = Op.getDebugLoc();
MVT VT = Op.getValueType();
MVT EltVT = VT;
if (VT.isVector())
EltVT = VT.getVectorElementType();
std::vector<Constant*> CV;
if (EltVT == MVT::f64) {
Constant *C = ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63))));
CV.push_back(C);
CV.push_back(C);
} else {
Constant *C = ConstantFP::get(APFloat(APInt(32, ~(1U << 31))));
CV.push_back(C);
CV.push_back(C);
CV.push_back(C);
CV.push_back(C);
Constant *C = ConstantVector::get(CV);
Evan Cheng
committed
SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
PseudoSourceValue::getConstantPool(), 0,
false, 16);
return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) {
DebugLoc dl = Op.getDebugLoc();
MVT VT = Op.getValueType();
MVT EltVT = VT;
if (VT.isVector()) {
EltVT = VT.getVectorElementType();
EltNum = VT.getVectorNumElements();
std::vector<Constant*> CV;
if (EltVT == MVT::f64) {
Constant *C = ConstantFP::get(APFloat(APInt(64, 1ULL << 63)));
CV.push_back(C);
CV.push_back(C);
} else {
Constant *C = ConstantFP::get(APFloat(APInt(32, 1U << 31)));
CV.push_back(C);
CV.push_back(C);
CV.push_back(C);
CV.push_back(C);
Constant *C = ConstantVector::get(CV);
Evan Cheng
committed
SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
PseudoSourceValue::getConstantPool(), 0,
false, 16);
return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
DAG.getNode(ISD::XOR, dl, MVT::v2i64,
DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
Op.getOperand(0)),
DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
DebugLoc dl = Op.getDebugLoc();
MVT VT = Op.getValueType();
MVT SrcVT = Op1.getValueType();
// If second operand is smaller, extend it first.
if (SrcVT.bitsLT(VT)) {
Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
SrcVT = VT;
}
// And if it is bigger, shrink it first.
if (SrcVT.bitsGT(VT)) {
Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
SrcVT = VT;
}
// At this point the operands and the result should have the same
// type, and that won't be f80 since that is not custom lowered.
// First get the sign bit of second operand.
std::vector<Constant*> CV;
if (SrcVT == MVT::f64) {
CV.push_back(ConstantFP::get(APFloat(APInt(64, 1ULL << 63))));
CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
} else {
CV.push_back(ConstantFP::get(APFloat(APInt(32, 1U << 31))));
CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
Constant *C = ConstantVector::get(CV);
Evan Cheng
committed
SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
PseudoSourceValue::getConstantPool(), 0,
false, 16);
SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
// Shift sign bit right or left if the two operands have different types.