Newer
Older
//===-- PreAllocSplitting.cpp - Pre-allocation Interval Spltting Pass. ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the machine instruction level pre-register allocation
// live interval splitting pass. It finds live interval barriers, i.e.
// instructions which will kill all physical registers in certain register
// classes, and split all live intervals which cross the barrier.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "pre-alloc-split"
Owen Anderson
committed
#include "VirtRegMap.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveStackAnalysis.h"
#include "llvm/CodeGen/MachineDominators.h"
Evan Cheng
committed
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegisterCoalescer.h"
Evan Cheng
committed
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/ADT/DenseMap.h"
Evan Cheng
committed
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
Evan Cheng
committed
#include "llvm/ADT/Statistic.h"
using namespace llvm;
static cl::opt<int> PreSplitLimit("pre-split-limit", cl::init(-1), cl::Hidden);
static cl::opt<int> DeadSplitLimit("dead-split-limit", cl::init(-1),
cl::Hidden);
static cl::opt<int> RestoreFoldLimit("restore-fold-limit", cl::init(-1),
cl::Hidden);
STATISTIC(NumSplits, "Number of intervals split");
STATISTIC(NumRemats, "Number of intervals split by rematerialization");
Owen Anderson
committed
STATISTIC(NumFolds, "Number of intervals split with spill folding");
Owen Anderson
committed
STATISTIC(NumRestoreFolds, "Number of intervals split with restore folding");
STATISTIC(NumRenumbers, "Number of intervals renumbered into new registers");
STATISTIC(NumDeadSpills, "Number of dead spills removed");
Evan Cheng
committed
namespace {
Nick Lewycky
committed
class PreAllocSplitting : public MachineFunctionPass {
MachineFunction *CurrMF;
Evan Cheng
committed
const TargetMachine *TM;
const TargetInstrInfo *TII;
Owen Anderson
committed
const TargetRegisterInfo* TRI;
Evan Cheng
committed
MachineFrameInfo *MFI;
MachineRegisterInfo *MRI;
Evan Cheng
committed
LiveIntervals *LIs;
LiveStacks *LSs;
Owen Anderson
committed
VirtRegMap *VRM;
Evan Cheng
committed
// Barrier - Current barrier being processed.
MachineInstr *Barrier;
// BarrierMBB - Basic block where the barrier resides in.
MachineBasicBlock *BarrierMBB;
// Barrier - Current barrier index.
Evan Cheng
committed
// CurrLI - Current live interval being split.
LiveInterval *CurrLI;
// CurrSLI - Current stack slot live interval.
LiveInterval *CurrSLI;
// CurrSValNo - Current val# for the stack slot live interval.
VNInfo *CurrSValNo;
// IntervalSSMap - A map from live interval to spill slots.
DenseMap<unsigned, int> IntervalSSMap;
Evan Cheng
committed
// Def2SpillMap - A map from a def instruction index to spill index.
Evan Cheng
committed
public:
static char ID;
: MachineFunctionPass(ID) {}
virtual bool runOnMachineFunction(MachineFunction &MF);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequired<SlotIndexes>();
AU.addPreserved<SlotIndexes>();
AU.addRequired<LiveIntervals>();
AU.addPreserved<LiveIntervals>();
AU.addRequired<LiveStacks>();
AU.addPreserved<LiveStacks>();
AU.addPreserved<RegisterCoalescer>();
AU.addPreserved<CalculateSpillWeights>();
if (StrongPHIElim)
AU.addPreservedID(StrongPHIEliminationID);
else
AU.addPreservedID(PHIEliminationID);
AU.addRequired<MachineDominatorTree>();
AU.addRequired<MachineLoopInfo>();
Owen Anderson
committed
AU.addRequired<VirtRegMap>();
AU.addPreserved<MachineDominatorTree>();
AU.addPreserved<MachineLoopInfo>();
Owen Anderson
committed
AU.addPreserved<VirtRegMap>();
MachineFunctionPass::getAnalysisUsage(AU);
}
virtual void releaseMemory() {
IntervalSSMap.clear();
Evan Cheng
committed
Def2SpillMap.clear();
}
virtual const char *getPassName() const {
return "Pre-Register Allocaton Live Interval Splitting";
}
Evan Cheng
committed
/// print - Implement the dump method.
virtual void print(raw_ostream &O, const Module* M = 0) const {
Evan Cheng
committed
LIs->print(O, M);
}
private:
MachineBasicBlock::iterator
Evan Cheng
committed
findSpillPoint(MachineBasicBlock*, MachineInstr*, MachineInstr*,
Lang Hames
committed
SmallPtrSet<MachineInstr*, 4>&);
Evan Cheng
committed
MachineBasicBlock::iterator
findRestorePoint(MachineBasicBlock*, MachineInstr*, SlotIndex,
Lang Hames
committed
SmallPtrSet<MachineInstr*, 4>&);
Evan Cheng
committed
int CreateSpillStackSlot(unsigned, const TargetRegisterClass *);
bool IsAvailableInStack(MachineBasicBlock*, unsigned,
Evan Cheng
committed
void UpdateSpillSlotInterval(VNInfo*, SlotIndex, SlotIndex);
Evan Cheng
committed
bool SplitRegLiveInterval(LiveInterval*);
bool SplitRegLiveIntervals(const TargetRegisterClass **,
SmallPtrSet<LiveInterval*, 8>&);
bool createsNewJoin(LiveRange* LR, MachineBasicBlock* DefMBB,
MachineBasicBlock* BarrierMBB);
bool Rematerialize(unsigned vreg, VNInfo* ValNo,
MachineInstr* DefMI,
MachineBasicBlock::iterator RestorePt,
SmallPtrSet<MachineInstr*, 4>& RefsInMBB);
Owen Anderson
committed
MachineInstr* FoldSpill(unsigned vreg, const TargetRegisterClass* RC,
MachineInstr* DefMI,
MachineInstr* Barrier,
MachineBasicBlock* MBB,
int& SS,
SmallPtrSet<MachineInstr*, 4>& RefsInMBB);
Owen Anderson
committed
MachineInstr* FoldRestore(unsigned vreg,
const TargetRegisterClass* RC,
MachineInstr* Barrier,
MachineBasicBlock* MBB,
int SS,
SmallPtrSet<MachineInstr*, 4>& RefsInMBB);
Owen Anderson
committed
void RenumberValno(VNInfo* VN);
Owen Anderson
committed
void ReconstructLiveInterval(LiveInterval* LI);
bool removeDeadSpills(SmallPtrSet<LiveInterval*, 8>& split);
unsigned getNumberOfNonSpills(SmallPtrSet<MachineInstr*, 4>& MIs,
unsigned Reg, int FrameIndex, bool& TwoAddr);
VNInfo* PerformPHIConstruction(MachineBasicBlock::iterator Use,
MachineBasicBlock* MBB, LiveInterval* LI,
Owen Anderson
committed
SmallPtrSet<MachineInstr*, 4>& Visited,
Owen Anderson
committed
DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
DenseMap<MachineInstr*, VNInfo*>& NewVNs,
DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
bool IsTopLevel, bool IsIntraBlock);
VNInfo* PerformPHIConstructionFallBack(MachineBasicBlock::iterator Use,
MachineBasicBlock* MBB, LiveInterval* LI,
SmallPtrSet<MachineInstr*, 4>& Visited,
DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
DenseMap<MachineInstr*, VNInfo*>& NewVNs,
DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
bool IsTopLevel, bool IsIntraBlock);
Owen Anderson
committed
};
} // end anonymous namespace
char PreAllocSplitting::ID = 0;
INITIALIZE_PASS(PreAllocSplitting, "pre-alloc-splitting",
"Pre-Register Allocation Live Interval Splitting",
false, false);
char &llvm::PreAllocSplittingID = PreAllocSplitting::ID;
Evan Cheng
committed
/// findSpillPoint - Find a gap as far away from the given MI that's suitable
/// for spilling the current live interval. The index must be before any
/// defs and uses of the live interval register in the mbb. Return begin() if
/// none is found.
MachineBasicBlock::iterator
PreAllocSplitting::findSpillPoint(MachineBasicBlock *MBB, MachineInstr *MI,
Evan Cheng
committed
MachineInstr *DefMI,
Lang Hames
committed
SmallPtrSet<MachineInstr*, 4> &RefsInMBB) {
Evan Cheng
committed
MachineBasicBlock::iterator Pt = MBB->begin();
Owen Anderson
committed
MachineBasicBlock::iterator MII = MI;
MachineBasicBlock::iterator EndPt = DefMI
? MachineBasicBlock::iterator(DefMI) : MBB->begin();
Owen Anderson
committed
while (MII != EndPt && !RefsInMBB.count(MII) &&
MII->getOpcode() != TRI->getCallFrameSetupOpcode())
--MII;
if (MII == EndPt || RefsInMBB.count(MII)) return Pt;
Owen Anderson
committed
while (MII != EndPt && !RefsInMBB.count(MII)) {
// We can't insert the spill between the barrier (a call), and its
// corresponding call frame setup.
if (MII->getOpcode() == TRI->getCallFrameDestroyOpcode()) {
while (MII->getOpcode() != TRI->getCallFrameSetupOpcode()) {
Owen Anderson
committed
--MII;
Owen Anderson
committed
if (MII == EndPt) {
return Pt;
Owen Anderson
committed
}
Evan Cheng
committed
}
Owen Anderson
committed
continue;
Lang Hames
committed
} else {
Owen Anderson
committed
Pt = MII;
Evan Cheng
committed
}
Owen Anderson
committed
if (RefsInMBB.count(MII))
return Pt;
--MII;
Evan Cheng
committed
}
return Pt;
}
/// findRestorePoint - Find a gap in the instruction index map that's suitable
/// for restoring the current live interval value. The index must be before any
/// uses of the live interval register in the mbb. Return end() if none is
/// found.
MachineBasicBlock::iterator
PreAllocSplitting::findRestorePoint(MachineBasicBlock *MBB, MachineInstr *MI,
Lang Hames
committed
SmallPtrSet<MachineInstr*, 4> &RefsInMBB) {
Evan Cheng
committed
// FIXME: Allow spill to be inserted to the beginning of the mbb. Update mbb
// begin index accordingly.
MachineBasicBlock::iterator Pt = MBB->end();
Owen Anderson
committed
MachineBasicBlock::iterator EndPt = MBB->getFirstTerminator();
Evan Cheng
committed
Owen Anderson
committed
// We start at the call, so walk forward until we find the call frame teardown
// since we can't insert restores before that. Bail if we encounter a use
// during this time.
MachineBasicBlock::iterator MII = MI;
if (MII == EndPt) return Pt;
while (MII != EndPt && !RefsInMBB.count(MII) &&
MII->getOpcode() != TRI->getCallFrameDestroyOpcode())
++MII;
if (MII == EndPt || RefsInMBB.count(MII)) return Pt;
++MII;
// FIXME: Limit the number of instructions to examine to reduce
// compile time?
while (MII != EndPt) {
Owen Anderson
committed
if (Index > LastIdx)
break;
Owen Anderson
committed
Owen Anderson
committed
// We can't insert a restore between the barrier (a call) and its
// corresponding call frame teardown.
if (MII->getOpcode() == TRI->getCallFrameSetupOpcode()) {
do {
if (MII == EndPt || RefsInMBB.count(MII)) return Pt;
Owen Anderson
committed
++MII;
Owen Anderson
committed
} while (MII->getOpcode() != TRI->getCallFrameDestroyOpcode());
Lang Hames
committed
} else {
Owen Anderson
committed
Pt = MII;
Evan Cheng
committed
}
Owen Anderson
committed
if (RefsInMBB.count(MII))
return Pt;
++MII;
Evan Cheng
committed
}
return Pt;
}
/// CreateSpillStackSlot - Create a stack slot for the live interval being
/// split. If the live interval was previously split, just reuse the same
/// slot.
int PreAllocSplitting::CreateSpillStackSlot(unsigned Reg,
const TargetRegisterClass *RC) {
int SS;
DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(Reg);
if (I != IntervalSSMap.end()) {
SS = I->second;
} else {
IntervalSSMap[Reg] = SS;
Evan Cheng
committed
}
// Create live interval for stack slot.
Evan Cheng
committed
CurrSLI = &LSs->getOrCreateInterval(SS, RC);
Evan Cheng
committed
if (CurrSLI->hasAtLeastOneValue())
CurrSValNo = CurrSLI->getValNumInfo(0);
else
CurrSValNo = CurrSLI->getNextValue(SlotIndex(), 0,
LSs->getVNInfoAllocator());
Evan Cheng
committed
}
/// IsAvailableInStack - Return true if register is available in a split stack
/// slot at the specified index.
bool
Evan Cheng
committed
PreAllocSplitting::IsAvailableInStack(MachineBasicBlock *DefMBB,
unsigned Reg, SlotIndex DefIndex,
SlotIndex RestoreIndex,
SlotIndex &SpillIndex,
Evan Cheng
committed
int& SS) const {
if (!DefMBB)
return false;
DenseMap<unsigned, int>::const_iterator I = IntervalSSMap.find(Reg);
if (I == IntervalSSMap.end())
Evan Cheng
committed
return false;
DenseMap<SlotIndex, SlotIndex>::const_iterator
II = Def2SpillMap.find(DefIndex);
Evan Cheng
committed
if (II == Def2SpillMap.end())
return false;
// If last spill of def is in the same mbb as barrier mbb (where restore will
// be), make sure it's not below the intended restore index.
// FIXME: Undo the previous spill?
assert(LIs->getMBBFromIndex(II->second) == DefMBB);
if (DefMBB == BarrierMBB && II->second >= RestoreIndex)
return false;
SS = I->second;
SpillIndex = II->second;
return true;
}
/// UpdateSpillSlotInterval - Given the specified val# of the register live
/// interval being split, and the spill and restore indicies, update the live
/// interval of the spill stack slot.
void
PreAllocSplitting::UpdateSpillSlotInterval(VNInfo *ValNo, SlotIndex SpillIndex,
SlotIndex RestoreIndex) {
Evan Cheng
committed
assert(LIs->getMBBFromIndex(RestoreIndex) == BarrierMBB &&
"Expect restore in the barrier mbb");
MachineBasicBlock *MBB = LIs->getMBBFromIndex(SpillIndex);
if (MBB == BarrierMBB) {
// Intra-block spill + restore. We are done.
LiveRange SLR(SpillIndex, RestoreIndex, CurrSValNo);
CurrSLI->addRange(SLR);
return;
}
Evan Cheng
committed
SmallPtrSet<MachineBasicBlock*, 4> Processed;
LiveRange SLR(SpillIndex, EndIdx, CurrSValNo);
CurrSLI->addRange(SLR);
Evan Cheng
committed
Processed.insert(MBB);
// Start from the spill mbb, figure out the extend of the spill slot's
// live interval.
SmallVector<MachineBasicBlock*, 4> WorkList;
Evan Cheng
committed
const LiveRange *LR = CurrLI->getLiveRangeContaining(SpillIndex);
if (LR->end > EndIdx)
// If live range extend beyond end of mbb, add successors to work list.
for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
SE = MBB->succ_end(); SI != SE; ++SI)
WorkList.push_back(*SI);
while (!WorkList.empty()) {
MachineBasicBlock *MBB = WorkList.back();
WorkList.pop_back();
Evan Cheng
committed
if (Processed.count(MBB))
continue;
LR = CurrLI->getLiveRangeContaining(Idx);
Evan Cheng
committed
if (LR && LR->valno == ValNo) {
EndIdx = LIs->getMBBEndIdx(MBB);
if (Idx <= RestoreIndex && RestoreIndex < EndIdx) {
// Spill slot live interval stops at the restore.
Evan Cheng
committed
LiveRange SLR(Idx, RestoreIndex, CurrSValNo);
CurrSLI->addRange(SLR);
Evan Cheng
committed
} else if (LR->end > EndIdx) {
// Live range extends beyond end of mbb, process successors.
Evan Cheng
committed
CurrSLI->addRange(SLR);
for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
SE = MBB->succ_end(); SI != SE; ++SI)
WorkList.push_back(*SI);
Evan Cheng
committed
LiveRange SLR(Idx, LR->end, CurrSValNo);
CurrSLI->addRange(SLR);
}
Evan Cheng
committed
Processed.insert(MBB);
Evan Cheng
committed
}
Owen Anderson
committed
/// PerformPHIConstruction - From properly set up use and def lists, use a PHI
/// construction algorithm to compute the ranges and valnos for an interval.
VNInfo*
PreAllocSplitting::PerformPHIConstruction(MachineBasicBlock::iterator UseI,
MachineBasicBlock* MBB, LiveInterval* LI,
Owen Anderson
committed
SmallPtrSet<MachineInstr*, 4>& Visited,
Owen Anderson
committed
DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
DenseMap<MachineInstr*, VNInfo*>& NewVNs,
DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
bool IsTopLevel, bool IsIntraBlock) {
Owen Anderson
committed
// Return memoized result if it's available.
if (IsTopLevel && Visited.count(UseI) && NewVNs.count(UseI))
return NewVNs[UseI];
else if (!IsTopLevel && IsIntraBlock && NewVNs.count(UseI))
return NewVNs[UseI];
else if (!IsIntraBlock && LiveOut.count(MBB))
return LiveOut[MBB];
Owen Anderson
committed
// Check if our block contains any uses or defs.
bool ContainsDefs = Defs.count(MBB);
bool ContainsUses = Uses.count(MBB);
Owen Anderson
committed
VNInfo* RetVNI = 0;
Owen Anderson
committed
// Enumerate the cases of use/def contaning blocks.
if (!ContainsDefs && !ContainsUses) {
return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs, Uses,
NewVNs, LiveOut, Phis,
IsTopLevel, IsIntraBlock);
Owen Anderson
committed
} else if (ContainsDefs && !ContainsUses) {
SmallPtrSet<MachineInstr*, 2>& BlockDefs = Defs[MBB];
Owen Anderson
committed
// Search for the def in this block. If we don't find it before the
// instruction we care about, go to the fallback case. Note that that
// should never happen: this cannot be intrablock, so use should
Owen Anderson
committed
// always be an end() iterator.
assert(UseI == MBB->end() && "No use marked in intrablock");
Owen Anderson
committed
MachineBasicBlock::iterator Walker = UseI;
--Walker;
while (Walker != MBB->begin()) {
if (BlockDefs.count(Walker))
Owen Anderson
committed
break;
Owen Anderson
committed
// Once we've found it, extend its VNInfo to our instruction.
SlotIndex DefIndex = LIs->getInstructionIndex(Walker);
DefIndex = DefIndex.getDefIndex();
SlotIndex EndIndex = LIs->getMBBEndIdx(MBB);
Owen Anderson
committed
RetVNI = NewVNs[Walker];
LI->addRange(LiveRange(DefIndex, EndIndex, RetVNI));
Owen Anderson
committed
} else if (!ContainsDefs && ContainsUses) {
SmallPtrSet<MachineInstr*, 2>& BlockUses = Uses[MBB];
Owen Anderson
committed
// Search for the use in this block that precedes the instruction we care
// about, going to the fallback case if we don't find it.
MachineBasicBlock::iterator Walker = UseI;
Owen Anderson
committed
bool found = false;
while (Walker != MBB->begin()) {
--Walker;
if (BlockUses.count(Walker)) {
Owen Anderson
committed
found = true;
break;
if (!found)
return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs,
Uses, NewVNs, LiveOut, Phis,
IsTopLevel, IsIntraBlock);
SlotIndex UseIndex = LIs->getInstructionIndex(Walker);
UseIndex = UseIndex.getUseIndex();
SlotIndex EndIndex;
if (IsIntraBlock) {
EndIndex = LIs->getInstructionIndex(UseI).getDefIndex();
Owen Anderson
committed
} else
EndIndex = LIs->getMBBEndIdx(MBB);
Owen Anderson
committed
// Now, recursively phi construct the VNInfo for the use we found,
// and then extend it to include the instruction we care about
RetVNI = PerformPHIConstruction(Walker, MBB, LI, Visited, Defs, Uses,
NewVNs, LiveOut, Phis, false, true);
Owen Anderson
committed
LI->addRange(LiveRange(UseIndex, EndIndex, RetVNI));
Owen Anderson
committed
// FIXME: Need to set kills properly for inter-block stuff.
} else if (ContainsDefs && ContainsUses) {
SmallPtrSet<MachineInstr*, 2>& BlockDefs = Defs[MBB];
SmallPtrSet<MachineInstr*, 2>& BlockUses = Uses[MBB];
Owen Anderson
committed
// This case is basically a merging of the two preceding case, with the
// special note that checking for defs must take precedence over checking
// for uses, because of two-address instructions.
MachineBasicBlock::iterator Walker = UseI;
Owen Anderson
committed
bool foundDef = false;
bool foundUse = false;
while (Walker != MBB->begin()) {
--Walker;
if (BlockDefs.count(Walker)) {
Owen Anderson
committed
foundDef = true;
break;
} else if (BlockUses.count(Walker)) {
Owen Anderson
committed
foundUse = true;
break;
if (!foundDef && !foundUse)
return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs,
Uses, NewVNs, LiveOut, Phis,
IsTopLevel, IsIntraBlock);
SlotIndex StartIndex = LIs->getInstructionIndex(Walker);
StartIndex = foundDef ? StartIndex.getDefIndex() : StartIndex.getUseIndex();
SlotIndex EndIndex;
if (IsIntraBlock) {
EndIndex = LIs->getInstructionIndex(UseI).getDefIndex();
Owen Anderson
committed
} else
EndIndex = LIs->getMBBEndIdx(MBB);
Owen Anderson
committed
if (foundDef)
RetVNI = NewVNs[Walker];
Owen Anderson
committed
else
RetVNI = PerformPHIConstruction(Walker, MBB, LI, Visited, Defs, Uses,
NewVNs, LiveOut, Phis, false, true);
Owen Anderson
committed
LI->addRange(LiveRange(StartIndex, EndIndex, RetVNI));
Owen Anderson
committed
}
// Memoize results so we don't have to recompute them.
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
if (!IsIntraBlock) LiveOut[MBB] = RetVNI;
else {
if (!NewVNs.count(UseI))
NewVNs[UseI] = RetVNI;
Visited.insert(UseI);
}
return RetVNI;
}
/// PerformPHIConstructionFallBack - PerformPHIConstruction fall back path.
///
VNInfo*
PreAllocSplitting::PerformPHIConstructionFallBack(MachineBasicBlock::iterator UseI,
MachineBasicBlock* MBB, LiveInterval* LI,
SmallPtrSet<MachineInstr*, 4>& Visited,
DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
DenseMap<MachineInstr*, VNInfo*>& NewVNs,
DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
bool IsTopLevel, bool IsIntraBlock) {
// NOTE: Because this is the fallback case from other cases, we do NOT
// assume that we are not intrablock here.
if (Phis.count(MBB)) return Phis[MBB];
LI->getNextValue(SlotIndex(), /*FIXME*/ 0,
LIs->getVNInfoAllocator());
if (!IsIntraBlock) LiveOut[MBB] = RetVNI;
// If there are no uses or defs between our starting point and the
// beginning of the block, then recursive perform phi construction
// on our predecessors.
DenseMap<MachineBasicBlock*, VNInfo*> IncomingVNs;
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
PE = MBB->pred_end(); PI != PE; ++PI) {
VNInfo* Incoming = PerformPHIConstruction((*PI)->end(), *PI, LI,
Visited, Defs, Uses, NewVNs,
LiveOut, Phis, false, false);
if (Incoming != 0)
IncomingVNs[*PI] = Incoming;
}
Owen Anderson
committed
VNInfo* OldVN = RetVNI;
VNInfo* NewVN = IncomingVNs.begin()->second;
VNInfo* MergedVN = LI->MergeValueNumberInto(OldVN, NewVN);
if (MergedVN == OldVN) std::swap(OldVN, NewVN);
for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator LOI = LiveOut.begin(),
LOE = LiveOut.end(); LOI != LOE; ++LOI)
if (LOI->second == OldVN)
LOI->second = MergedVN;
for (DenseMap<MachineInstr*, VNInfo*>::iterator NVI = NewVNs.begin(),
NVE = NewVNs.end(); NVI != NVE; ++NVI)
if (NVI->second == OldVN)
NVI->second = MergedVN;
for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator PI = Phis.begin(),
PE = Phis.end(); PI != PE; ++PI)
if (PI->second == OldVN)
PI->second = MergedVN;
RetVNI = MergedVN;
} else {
// Otherwise, merge the incoming VNInfos with a phi join. Create a new
// VNInfo to represent the joined value.
for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator I =
IncomingVNs.begin(), E = IncomingVNs.end(); I != E; ++I) {
if (IsIntraBlock) {
EndIndex = LIs->getInstructionIndex(UseI).getDefIndex();
} else
EndIndex = LIs->getMBBEndIdx(MBB);
LI->addRange(LiveRange(StartIndex, EndIndex, RetVNI));
// Memoize results so we don't have to recompute them.
if (!IsIntraBlock)
LiveOut[MBB] = RetVNI;
Owen Anderson
committed
else {
if (!NewVNs.count(UseI))
NewVNs[UseI] = RetVNI;
Visited.insert(UseI);
Owen Anderson
committed
}
Owen Anderson
committed
}
/// ReconstructLiveInterval - Recompute a live interval from scratch.
void PreAllocSplitting::ReconstructLiveInterval(LiveInterval* LI) {
Benjamin Kramer
committed
VNInfo::Allocator& Alloc = LIs->getVNInfoAllocator();
Owen Anderson
committed
// Clear the old ranges and valnos;
LI->clear();
// Cache the uses and defs of the register
typedef DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> > RegMap;
RegMap Defs, Uses;
// Keep track of the new VNs we're creating.
DenseMap<MachineInstr*, VNInfo*> NewVNs;
SmallPtrSet<VNInfo*, 2> PhiVNs;
// Cache defs, and create a new VNInfo for each def.
for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(LI->reg),
DE = MRI->def_end(); DI != DE; ++DI) {
Defs[(*DI).getParent()].insert(&*DI);
SlotIndex DefIdx = LIs->getInstructionIndex(&*DI);
DefIdx = DefIdx.getDefIndex();
Owen Anderson
committed
assert(!DI->isPHI() && "PHI instr in code during pre-alloc splitting.");
VNInfo* NewVN = LI->getNextValue(DefIdx, 0, Alloc);
Owen Anderson
committed
// If the def is a move, set the copy field.
Jakob Stoklund Olesen
committed
if (DI->isCopyLike() && DI->getOperand(0).getReg() == LI->reg)
NewVN->setCopy(&*DI);
Owen Anderson
committed
NewVNs[&*DI] = NewVN;
}
// Cache uses as a separate pass from actually processing them.
for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(LI->reg),
UE = MRI->use_end(); UI != UE; ++UI)
Uses[(*UI).getParent()].insert(&*UI);
// Now, actually process every use and use a phi construction algorithm
// to walk from it to its reaching definitions, building VNInfos along
// the way.
DenseMap<MachineBasicBlock*, VNInfo*> LiveOut;
DenseMap<MachineBasicBlock*, VNInfo*> Phis;
Owen Anderson
committed
SmallPtrSet<MachineInstr*, 4> Visited;
Owen Anderson
committed
for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(LI->reg),
UE = MRI->use_end(); UI != UE; ++UI) {
Owen Anderson
committed
PerformPHIConstruction(&*UI, UI->getParent(), LI, Visited, Defs,
Uses, NewVNs, LiveOut, Phis, true, true);
Owen Anderson
committed
}
// Add ranges for dead defs
for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(LI->reg),
DE = MRI->def_end(); DI != DE; ++DI) {
SlotIndex DefIdx = LIs->getInstructionIndex(&*DI);
DefIdx = DefIdx.getDefIndex();
if (LI->liveAt(DefIdx)) continue;
VNInfo* DeadVN = NewVNs[&*DI];
LI->addRange(LiveRange(DefIdx, DefIdx.getNextSlot(), DeadVN));
Owen Anderson
committed
}
Owen Anderson
committed
/// RenumberValno - Split the given valno out into a new vreg, allowing it to
/// be allocated to a different register. This function creates a new vreg,
/// copies the valno and its live ranges over to the new vreg's interval,
/// removes them from the old interval, and rewrites all uses and defs of
/// the original reg to the new vreg within those ranges.
void PreAllocSplitting::RenumberValno(VNInfo* VN) {
SmallVector<VNInfo*, 4> Stack;
SmallVector<VNInfo*, 4> VNsToCopy;
Stack.push_back(VN);
// Walk through and copy the valno we care about, and any other valnos
// that are two-address redefinitions of the one we care about. These
// will need to be rewritten as well. We also check for safety of the
// renumbering here, by making sure that none of the valno involved has
// phi kills.
while (!Stack.empty()) {
VNInfo* OldVN = Stack.back();
Stack.pop_back();
// Bail out if we ever encounter a valno that has a PHI kill. We can't
// renumber these.
VNsToCopy.push_back(OldVN);
// Locate two-address redefinitions
for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(CurrLI->reg),
DE = MRI->def_end(); DI != DE; ++DI) {
if (!DI->isRegTiedToUseOperand(DI.getOperandNo())) continue;
SlotIndex DefIdx = LIs->getInstructionIndex(&*DI).getDefIndex();
VNInfo* NextVN = CurrLI->findDefinedVNInfoForRegInt(DefIdx);
if (std::find(VNsToCopy.begin(), VNsToCopy.end(), NextVN) !=
VNsToCopy.end())
Stack.push_back(NextVN);
}
}
Owen Anderson
committed
// Create the new vreg
unsigned NewVReg = MRI->createVirtualRegister(MRI->getRegClass(CurrLI->reg));
// Create the new live interval
Owen Anderson
committed
LiveInterval& NewLI = LIs->getOrCreateInterval(NewVReg);
for (SmallVector<VNInfo*, 4>::iterator OI = VNsToCopy.begin(), OE =
VNsToCopy.end(); OI != OE; ++OI) {
VNInfo* OldVN = *OI;
// Copy the valno over
VNInfo* NewVN = NewLI.createValueCopy(OldVN, LIs->getVNInfoAllocator());
NewLI.MergeValueInAsValue(*CurrLI, OldVN, NewVN);
// Remove the valno from the old interval
CurrLI->removeValNo(OldVN);
}
Owen Anderson
committed
// Rewrite defs and uses. This is done in two stages to avoid invalidating
// the reg_iterator.
SmallVector<std::pair<MachineInstr*, unsigned>, 8> OpsToChange;
for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg),
E = MRI->reg_end(); I != E; ++I) {
MachineOperand& MO = I.getOperand();
Owen Anderson
committed
if ((MO.isUse() && NewLI.liveAt(InstrIdx.getUseIndex())) ||
(MO.isDef() && NewLI.liveAt(InstrIdx.getDefIndex())))
Owen Anderson
committed
OpsToChange.push_back(std::make_pair(&*I, I.getOperandNo()));
}
for (SmallVector<std::pair<MachineInstr*, unsigned>, 8>::iterator I =
OpsToChange.begin(), E = OpsToChange.end(); I != E; ++I) {
MachineInstr* Inst = I->first;
unsigned OpIdx = I->second;
MachineOperand& MO = Inst->getOperand(OpIdx);
MO.setReg(NewVReg);
}
Owen Anderson
committed
// Grow the VirtRegMap, since we've created a new vreg.
VRM->grow();
// The renumbered vreg shares a stack slot with the old register.
if (IntervalSSMap.count(CurrLI->reg))
IntervalSSMap[NewVReg] = IntervalSSMap[CurrLI->reg];
++NumRenumbers;
Owen Anderson
committed
}
Evan Cheng
committed
bool PreAllocSplitting::Rematerialize(unsigned VReg, VNInfo* ValNo,
MachineInstr* DefMI,
MachineBasicBlock::iterator RestorePt,
SmallPtrSet<MachineInstr*, 4>& RefsInMBB) {
MachineBasicBlock& MBB = *RestorePt->getParent();
MachineBasicBlock::iterator KillPt = BarrierMBB->end();
if (LIs->getInstructionFromIndex(ValNo->def) == 0 ||
DefMI->getParent() == BarrierMBB)
Lang Hames
committed
KillPt = findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB);
KillPt = llvm::next(MachineBasicBlock::iterator(DefMI));
if (KillPt == DefMI->getParent()->end())
return false;
Jakob Stoklund Olesen
committed
TII->reMaterialize(MBB, RestorePt, VReg, 0, DefMI, *TRI);
Lang Hames
committed
SlotIndex RematIdx = LIs->InsertMachineInstrInMaps(prior(RestorePt));
ReconstructLiveInterval(CurrLI);
RenumberValno(CurrLI->findDefinedVNInfoForRegInt(RematIdx));
++NumSplits;
++NumRemats;
Owen Anderson
committed
return true;
}
MachineInstr* PreAllocSplitting::FoldSpill(unsigned vreg,
const TargetRegisterClass* RC,
MachineInstr* DefMI,
MachineInstr* Barrier,
MachineBasicBlock* MBB,
int& SS,
SmallPtrSet<MachineInstr*, 4>& RefsInMBB) {
// Go top down if RefsInMBB is empty.
if (RefsInMBB.empty())
return 0;
MachineBasicBlock::iterator FoldPt = Barrier;
while (&*FoldPt != DefMI && FoldPt != MBB->begin() &&
!RefsInMBB.count(FoldPt))
--FoldPt;
int OpIdx = FoldPt->findRegisterDefOperandIdx(vreg);
Owen Anderson
committed
if (OpIdx == -1)
return 0;
SmallVector<unsigned, 1> Ops;
Ops.push_back(OpIdx);
if (!TII->canFoldMemoryOperand(FoldPt, Ops))
return 0;
DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(vreg);
if (I != IntervalSSMap.end()) {
SS = I->second;
} else {
Owen Anderson
committed
}
Jakob Stoklund Olesen
committed
MachineInstr* FMI = TII->foldMemoryOperand(FoldPt, Ops, SS);
Owen Anderson
committed
if (FMI) {
LIs->ReplaceMachineInstrInMaps(FoldPt, FMI);
Jakob Stoklund Olesen
committed
FoldPt->eraseFromParent();
Owen Anderson
committed
++NumFolds;
IntervalSSMap[vreg] = SS;
Evan Cheng
committed
CurrSLI = &LSs->getOrCreateInterval(SS, RC);
Owen Anderson
committed
if (CurrSLI->hasAtLeastOneValue())
CurrSValNo = CurrSLI->getValNumInfo(0);
else
CurrSValNo = CurrSLI->getNextValue(SlotIndex(), 0,
LSs->getVNInfoAllocator());
Owen Anderson
committed
}
Owen Anderson
committed
return FMI;
Owen Anderson
committed
MachineInstr* PreAllocSplitting::FoldRestore(unsigned vreg,
const TargetRegisterClass* RC,
MachineInstr* Barrier,
MachineBasicBlock* MBB,
int SS,
SmallPtrSet<MachineInstr*, 4>& RefsInMBB) {
if ((int)RestoreFoldLimit != -1 && RestoreFoldLimit == (int)NumRestoreFolds)
Owen Anderson
committed
return 0;
Owen Anderson
committed
// Go top down if RefsInMBB is empty.
if (RefsInMBB.empty())
return 0;
// Can't fold a restore between a call stack setup and teardown.
MachineBasicBlock::iterator FoldPt = Barrier;
Owen Anderson
committed
// Advance from barrier to call frame teardown.
while (FoldPt != MBB->getFirstTerminator() &&
FoldPt->getOpcode() != TRI->getCallFrameDestroyOpcode()) {
if (RefsInMBB.count(FoldPt))
return 0;
Owen Anderson
committed
Owen Anderson
committed
++FoldPt;
}
if (FoldPt == MBB->getFirstTerminator())
return 0;
else
++FoldPt;
// Now find the restore point.
while (FoldPt != MBB->getFirstTerminator() && !RefsInMBB.count(FoldPt)) {
Owen Anderson
committed
if (FoldPt->getOpcode() == TRI->getCallFrameSetupOpcode()) {
while (FoldPt != MBB->getFirstTerminator() &&
FoldPt->getOpcode() != TRI->getCallFrameDestroyOpcode()) {
if (RefsInMBB.count(FoldPt))
return 0;
++FoldPt;
}
Owen Anderson
committed
if (FoldPt == MBB->getFirstTerminator())
return 0;
}
++FoldPt;
Owen Anderson
committed
}
if (FoldPt == MBB->getFirstTerminator())
return 0;
int OpIdx = FoldPt->findRegisterUseOperandIdx(vreg, true);
if (OpIdx == -1)
return 0;
SmallVector<unsigned, 1> Ops;
Ops.push_back(OpIdx);
if (!TII->canFoldMemoryOperand(FoldPt, Ops))
return 0;
Jakob Stoklund Olesen
committed
MachineInstr* FMI = TII->foldMemoryOperand(FoldPt, Ops, SS);
Owen Anderson
committed
if (FMI) {
LIs->ReplaceMachineInstrInMaps(FoldPt, FMI);
Jakob Stoklund Olesen
committed
FoldPt->eraseFromParent();
Owen Anderson
committed
++NumRestoreFolds;
Owen Anderson
committed
}
return FMI;
}
Evan Cheng
committed
/// SplitRegLiveInterval - Split (spill and restore) the given live interval
/// so it would not cross the barrier that's being processed. Shrink wrap
/// (minimize) the live interval to the last uses.
bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval *LI) {
DEBUG(dbgs() << "Pre-alloc splitting " << LI->reg << " for " << *Barrier
Evan Cheng
committed
CurrLI = LI;
// Find live range where current interval cross the barrier.
LiveInterval::iterator LR =
CurrLI->FindLiveRangeContaining(BarrierIdx.getUseIndex());
Evan Cheng
committed
VNInfo *ValNo = LR->valno;
assert(!ValNo->isUnused() && "Val# is defined by a dead def?");
Evan Cheng
committed
MachineInstr *DefMI = LIs->getInstructionFromIndex(ValNo->def);
Evan Cheng
committed
Owen Anderson
committed
// If this would create a new join point, do not split.
if (DefMI && createsNewJoin(LR, DefMI->getParent(), Barrier->getParent())) {
DEBUG(dbgs() << "FAILED (would create a new join point).\n");
Owen Anderson
committed
return false;
Owen Anderson
committed
Evan Cheng
committed
// Find all references in the barrier mbb.
SmallPtrSet<MachineInstr*, 4> RefsInMBB;
for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg),
E = MRI->reg_end(); I != E; ++I) {
MachineInstr *RefMI = &*I;
if (RefMI->getParent() == BarrierMBB)
RefsInMBB.insert(RefMI);
}
// Find a point to restore the value after the barrier.
MachineBasicBlock::iterator RestorePt =
Lang Hames
committed
findRestorePoint(BarrierMBB, Barrier, LR->end, RefsInMBB);
DEBUG(dbgs() << "FAILED (could not find a suitable restore point).\n");
Evan Cheng
committed
return false;
Evan Cheng
committed
if (DefMI && LIs->isReMaterializable(*LI, ValNo, DefMI))
Lang Hames
committed
if (Rematerialize(LI->reg, ValNo, DefMI, RestorePt, RefsInMBB)) {
Evan Cheng
committed
// Add a spill either before the barrier or after the definition.
Evan Cheng
committed
MachineBasicBlock *DefMBB = DefMI ? DefMI->getParent() : NULL;
Evan Cheng
committed
const TargetRegisterClass *RC = MRI->getRegClass(CurrLI->reg);
Evan Cheng
committed
MachineInstr *SpillMI = NULL;
if (LIs->getInstructionFromIndex(ValNo->def) == 0) {
// If we don't know where the def is we must split just before the barrier.
Owen Anderson
committed
if ((SpillMI = FoldSpill(LI->reg, RC, 0, Barrier,
BarrierMBB, SS, RefsInMBB))) {
SpillIndex = LIs->getInstructionIndex(SpillMI);
} else {
MachineBasicBlock::iterator SpillPt =
Lang Hames
committed
findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB);
DEBUG(dbgs() << "FAILED (could not find a suitable spill point).\n");
Owen Anderson
committed
return false; // No gap to insert spill.
Owen Anderson
committed
// Add spill.
SS = CreateSpillStackSlot(CurrLI->reg, RC);
Evan Cheng
committed
TII->storeRegToStackSlot(*BarrierMBB, SpillPt, CurrLI->reg, true, SS, RC,
TRI);
Owen Anderson
committed
SpillMI = prior(SpillPt);
Lang Hames
committed
SpillIndex = LIs->InsertMachineInstrInMaps(SpillMI);
Owen Anderson
committed
}
Evan Cheng
committed
} else if (!IsAvailableInStack(DefMBB, CurrLI->reg, ValNo->def,
Lang Hames
committed
LIs->getZeroIndex(), SpillIndex, SS)) {
Evan Cheng
committed
// If it's already split, just restore the value. There is no need to spill
// the def again.
return false; // Def is dead. Do nothing.
Owen Anderson
committed
if ((SpillMI = FoldSpill(LI->reg, RC, DefMI, Barrier,
BarrierMBB, SS, RefsInMBB))) {
Owen Anderson
committed
SpillIndex = LIs->getInstructionIndex(SpillMI);
Evan Cheng
committed
} else {
Owen Anderson
committed
// Check if it's possible to insert a spill after the def MI.
MachineBasicBlock::iterator SpillPt;
if (DefMBB == BarrierMBB) {
// Add spill after the def and the last use before the barrier.
SpillPt = findSpillPoint(BarrierMBB, Barrier, DefMI,
Lang Hames
committed
RefsInMBB);
DEBUG(dbgs() << "FAILED (could not find a suitable spill point).\n");
Owen Anderson
committed
return false; // No gap to insert spill.
Owen Anderson
committed
} else {
SpillPt = llvm::next(MachineBasicBlock::iterator(DefMI));
DEBUG(dbgs() << "FAILED (could not find a suitable spill point).\n");
Owen Anderson
committed
return false; // No gap to insert spill.
Owen Anderson
committed
}
Owen Anderson
committed
SS = CreateSpillStackSlot(CurrLI->reg, RC);
Evan Cheng
committed
TII->storeRegToStackSlot(*DefMBB, SpillPt, CurrLI->reg, false, SS, RC,
TRI);
Owen Anderson
committed
SpillMI = prior(SpillPt);
Lang Hames
committed
SpillIndex = LIs->InsertMachineInstrInMaps(SpillMI);
Evan Cheng
committed
}
Evan Cheng
committed
}
Evan Cheng
committed
// Remember def instruction index to spill index mapping.
if (DefMI && SpillMI)
Def2SpillMap[ValNo->def] = SpillIndex;
Evan Cheng
committed
// Add restore.
Owen Anderson
committed
bool FoldedRestore = false;
Lang Hames
committed
SlotIndex RestoreIndex;
Owen Anderson
committed
if (MachineInstr* LMI = FoldRestore(CurrLI->reg, RC, Barrier,
BarrierMBB, SS, RefsInMBB)) {
RestorePt = LMI;
Owen Anderson
committed
RestoreIndex = LIs->getInstructionIndex(RestorePt);
Owen Anderson
committed
FoldedRestore = true;
} else {
Evan Cheng
committed
TII->loadRegFromStackSlot(*BarrierMBB, RestorePt, CurrLI->reg, SS, RC, TRI);
Owen Anderson
committed
MachineInstr *LoadMI = prior(RestorePt);
Lang Hames
committed
RestoreIndex = LIs->InsertMachineInstrInMaps(LoadMI);
Owen Anderson
committed
}
Evan Cheng
committed
// Update spill stack slot live interval.
UpdateSpillSlotInterval(ValNo, SpillIndex.getUseIndex().getNextSlot(),
RestoreIndex.getDefIndex());
ReconstructLiveInterval(CurrLI);
Owen Anderson
committed
if (!FoldedRestore) {
SlotIndex RestoreIdx = LIs->getInstructionIndex(prior(RestorePt));
RestoreIdx = RestoreIdx.getDefIndex();
RenumberValno(CurrLI->findDefinedVNInfoForRegInt(RestoreIdx));
Owen Anderson
committed
}
++NumSplits;
Evan Cheng
committed
return true;
}
/// SplitRegLiveIntervals - Split all register live intervals that cross the
/// barrier that's being processed.
bool
PreAllocSplitting::SplitRegLiveIntervals(const TargetRegisterClass **RCs,
SmallPtrSet<LiveInterval*, 8>& Split) {
Evan Cheng
committed
// First find all the virtual registers whose live intervals are intercepted
// by the current barrier.
SmallVector<LiveInterval*, 8> Intervals;
for (const TargetRegisterClass **RC = RCs; *RC; ++RC) {
// FIXME: If it's not safe to move any instruction that defines the barrier
// register class, then it means there are some special dependencies which
// codegen is not modelling. Ignore these barriers for now.
if (!TII->isSafeToMoveRegClassDefs(*RC))
continue;
const std::vector<unsigned> &VRs = MRI->getRegClassVirtRegs(*RC);
Evan Cheng
committed
for (unsigned i = 0, e = VRs.size(); i != e; ++i) {
unsigned Reg = VRs[i];
if (!LIs->hasInterval(Reg))
continue;
LiveInterval *LI = &LIs->getInterval(Reg);
if (LI->liveAt(BarrierIdx) && !Barrier->readsRegister(Reg))
// Virtual register live interval is intercepted by the barrier. We
// should split and shrink wrap its interval if possible.
Intervals.push_back(LI);
}
}
// Process the affected live intervals.
bool Change = false;
while (!Intervals.empty()) {
if (PreSplitLimit != -1 && (int)NumSplits == PreSplitLimit)
break;
Evan Cheng
committed
LiveInterval *LI = Intervals.back();
Intervals.pop_back();
bool result = SplitRegLiveInterval(LI);
if (result) Split.insert(LI);
Change |= result;
Evan Cheng
committed
}
return Change;
}
unsigned PreAllocSplitting::getNumberOfNonSpills(
SmallPtrSet<MachineInstr*, 4>& MIs,
unsigned Reg, int FrameIndex,
bool& FeedsTwoAddr) {
unsigned NonSpills = 0;
for (SmallPtrSet<MachineInstr*, 4>::iterator UI = MIs.begin(), UE = MIs.end();
UI != UE; ++UI) {
int StoreFrameIndex;
unsigned StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex);
if (StoreVReg != Reg || StoreFrameIndex != FrameIndex)
++NonSpills;
int DefIdx = (*UI)->findRegisterDefOperandIdx(Reg);
if (DefIdx != -1 && (*UI)->isRegTiedToUseOperand(DefIdx))
FeedsTwoAddr = true;
return NonSpills;
/// removeDeadSpills - After doing splitting, filter through all intervals we've
/// split, and see if any of the spills are unnecessary. If so, remove them.
bool PreAllocSplitting::removeDeadSpills(SmallPtrSet<LiveInterval*, 8>& split) {
bool changed = false;
// Walk over all of the live intervals that were touched by the splitter,
// and see if we can do any DCE and/or folding.
for (SmallPtrSet<LiveInterval*, 8>::iterator LI = split.begin(),
LE = split.end(); LI != LE; ++LI) {
Owen Anderson
committed
DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> > VNUseCount;
// First, collect all the uses of the vreg, and sort them by their
// reaching definition (VNInfo).
for (MachineRegisterInfo::use_iterator UI = MRI->use_begin((*LI)->reg),
UE = MRI->use_end(); UI != UE; ++UI) {
SlotIndex index = LIs->getInstructionIndex(&*UI);
index = index.getUseIndex();
const LiveRange* LR = (*LI)->getLiveRangeContaining(index);
Owen Anderson
committed
VNUseCount[LR->valno].insert(&*UI);
}
// Now, take the definitions (VNInfo's) one at a time and try to DCE
// and/or fold them away.
for (LiveInterval::vni_iterator VI = (*LI)->vni_begin(),
VE = (*LI)->vni_end(); VI != VE; ++VI) {
if (DeadSplitLimit != -1 && (int)NumDeadSpills == DeadSplitLimit)
return changed;
VNInfo* CurrVN = *VI;
// We don't currently try to handle definitions with PHI kills, because
// it would involve processing more than one VNInfo at once.
// We also don't try to handle the results of PHI joins, since there's
// no defining instruction to analyze.
MachineInstr* DefMI = LIs->getInstructionFromIndex(CurrVN->def);
if (!DefMI || CurrVN->isUnused()) continue;
Owen Anderson
committed
// We're only interested in eliminating cruft introduced by the splitter,
// is of the form load-use or load-use-store. First, check that the
// definition is a load, and remember what stack slot we loaded it from.
int FrameIndex;
if (!TII->isLoadFromStackSlot(DefMI, FrameIndex)) continue;
// If the definition has no uses at all, just DCE it.
Owen Anderson
committed
if (VNUseCount[CurrVN].size() == 0) {
LIs->RemoveMachineInstrFromMaps(DefMI);
(*LI)->removeValNo(CurrVN);
DefMI->eraseFromParent();
Owen Anderson
committed
VNUseCount.erase(CurrVN);
++NumDeadSpills;
Owen Anderson
committed
changed = true;
// Second, get the number of non-store uses of the definition, as well as
// a flag indicating whether it feeds into a later two-address definition.
bool FeedsTwoAddr = false;
unsigned NonSpillCount = getNumberOfNonSpills(VNUseCount[CurrVN],
(*LI)->reg, FrameIndex,
FeedsTwoAddr);
// If there's one non-store use and it doesn't feed a two-addr, then
// this is a load-use-store case that we can try to fold.
if (NonSpillCount == 1 && !FeedsTwoAddr) {
// Start by finding the non-store use MachineInstr.
SmallPtrSet<MachineInstr*, 4>::iterator UI = VNUseCount[CurrVN].begin();
int StoreFrameIndex;
unsigned StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex);
while (UI != VNUseCount[CurrVN].end() &&
(StoreVReg == (*LI)->reg && StoreFrameIndex == FrameIndex)) {
++UI;
if (UI != VNUseCount[CurrVN].end())
StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex);
}
if (UI == VNUseCount[CurrVN].end()) continue;
MachineInstr* use = *UI;
int OpIdx = use->findRegisterUseOperandIdx((*LI)->reg, false);
if (OpIdx == -1) continue;
SmallVector<unsigned, 1> Ops;
Ops.push_back(OpIdx);
if (!TII->canFoldMemoryOperand(use, Ops)) continue;
Jakob Stoklund Olesen
committed
MachineInstr* NewMI = TII->foldMemoryOperand(use, Ops, FrameIndex);
if (!NewMI) continue;
LIs->RemoveMachineInstrFromMaps(DefMI);
LIs->ReplaceMachineInstrInMaps(use, NewMI);
(*LI)->removeValNo(CurrVN);
DefMI->eraseFromParent();
Jakob Stoklund Olesen
committed
use->eraseFromParent();
VNUseCount[CurrVN].erase(use);
Jakob Stoklund Olesen
committed
// Remove deleted instructions. Note that we need to remove them from
// the VNInfo->use map as well, just to be safe.
for (SmallPtrSet<MachineInstr*, 4>::iterator II =
VNUseCount[CurrVN].begin(), IE = VNUseCount[CurrVN].end();
II != IE; ++II) {
for (DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> >::iterator
Owen Anderson
committed
VNI = VNUseCount.begin(), VNE = VNUseCount.end(); VNI != VNE;
++VNI)
if (VNI->first != CurrVN)
VNI->second.erase(*II);
LIs->RemoveMachineInstrFromMaps(*II);
(*II)->eraseFromParent();
}
Owen Anderson
committed
VNUseCount.erase(CurrVN);
for (DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> >::iterator
VI = VNUseCount.begin(), VE = VNUseCount.end(); VI != VE; ++VI)
if (VI->second.erase(use))
VI->second.insert(NewMI);
++NumDeadSpills;
changed = true;
continue;
}
// If there's more than one non-store instruction, we can't profitably
// fold it, so bail.
if (NonSpillCount) continue;
Owen Anderson
committed
// Otherwise, this is a load-store case, so DCE them.
for (SmallPtrSet<MachineInstr*, 4>::iterator UI =
VNUseCount[CurrVN].begin(), UE = VNUseCount[CurrVN].end();
UI != UE; ++UI) {
LIs->RemoveMachineInstrFromMaps(*UI);
(*UI)->eraseFromParent();
Owen Anderson
committed
}
Owen Anderson
committed
VNUseCount.erase(CurrVN);
LIs->RemoveMachineInstrFromMaps(DefMI);
(*LI)->removeValNo(CurrVN);
DefMI->eraseFromParent();
++NumDeadSpills;
}
}
return changed;
}
bool PreAllocSplitting::createsNewJoin(LiveRange* LR,
MachineBasicBlock* DefMBB,
MachineBasicBlock* BarrierMBB) {
if (DefMBB == BarrierMBB)
return false;
return false;
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
if (LR->end < MBBEnd)
return false;
MachineLoopInfo& MLI = getAnalysis<MachineLoopInfo>();
if (MLI.getLoopFor(DefMBB) != MLI.getLoopFor(BarrierMBB))
return true;
MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>();
SmallPtrSet<MachineBasicBlock*, 4> Visited;
typedef std::pair<MachineBasicBlock*,
MachineBasicBlock::succ_iterator> ItPair;
SmallVector<ItPair, 4> Stack;
Stack.push_back(std::make_pair(BarrierMBB, BarrierMBB->succ_begin()));
while (!Stack.empty()) {
ItPair P = Stack.back();
Stack.pop_back();
MachineBasicBlock* PredMBB = P.first;
MachineBasicBlock::succ_iterator S = P.second;
if (S == PredMBB->succ_end())
continue;
else if (Visited.count(*S)) {
Stack.push_back(std::make_pair(PredMBB, ++S));
continue;
} else
Owen Anderson
committed
Stack.push_back(std::make_pair(PredMBB, S+1));
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
MachineBasicBlock* MBB = *S;
Visited.insert(MBB);
if (MBB == BarrierMBB)
return true;
MachineDomTreeNode* DefMDTN = MDT.getNode(DefMBB);
MachineDomTreeNode* BarrierMDTN = MDT.getNode(BarrierMBB);
MachineDomTreeNode* MDTN = MDT.getNode(MBB)->getIDom();
while (MDTN) {
if (MDTN == DefMDTN)
return true;
else if (MDTN == BarrierMDTN)
break;
MDTN = MDTN->getIDom();
}
MBBEnd = LIs->getMBBEndIdx(MBB);
if (LR->end > MBBEnd)
Stack.push_back(std::make_pair(MBB, MBB->succ_begin()));
}
return false;
}
bool PreAllocSplitting::runOnMachineFunction(MachineFunction &MF) {
CurrMF = &MF;
TM = &MF.getTarget();
Owen Anderson
committed
TRI = TM->getRegisterInfo();
TII = TM->getInstrInfo();
MFI = MF.getFrameInfo();
MRI = &MF.getRegInfo();
LIs = &getAnalysis<LiveIntervals>();
LSs = &getAnalysis<LiveStacks>();
Owen Anderson
committed
VRM = &getAnalysis<VirtRegMap>();
Evan Cheng
committed
bool MadeChange = false;
// Make sure blocks are numbered in order.
MF.RenumberBlocks();
Evan Cheng
committed
MachineBasicBlock *Entry = MF.begin();
SmallPtrSet<MachineBasicBlock*,16> Visited;
SmallPtrSet<LiveInterval*, 8> Split;
Evan Cheng
committed
for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
DFI != E; ++DFI) {
BarrierMBB = *DFI;
for (MachineBasicBlock::iterator I = BarrierMBB->begin(),
E = BarrierMBB->end(); I != E; ++I) {
Barrier = &*I;
const TargetRegisterClass **BarrierRCs =
Barrier->getDesc().getRegClassBarriers();
if (!BarrierRCs)
continue;
BarrierIdx = LIs->getInstructionIndex(Barrier);
MadeChange |= SplitRegLiveIntervals(BarrierRCs, Split);
Evan Cheng
committed
}
}
Evan Cheng
committed
MadeChange |= removeDeadSpills(Split);
Evan Cheng
committed
return MadeChange;