Newer
Older
//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the AsmPrinter class.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Constants.h"
#include "llvm/CodeGen/GCMetadataPrinter.h"
Chris Lattner
committed
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/DwarfWriter.h"
Argyrios Kyrtzidis
committed
#include "llvm/Analysis/DebugInfo.h"
Chris Lattner
committed
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
Evan Cheng
committed
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Mangler.h"
#include "llvm/MC/MCAsmInfo.h"
Owen Anderson
committed
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include <cerrno>
using namespace llvm;
Evan Cheng
committed
static cl::opt<cl::boolOrDefault>
AsmVerbose("asm-verbose", cl::desc("Add comments to directives."),
cl::init(cl::BOU_UNSET));
const MCAsmInfo *T, bool VDef)
: MachineFunctionPass(&ID), FunctionNumber(0), O(o),
TM(tm), MAI(T), TRI(tm.getRegisterInfo()),
Chris Lattner
committed
OutContext(*new MCContext()),
// FIXME: Pass instprinter to streamer.
OutStreamer(*createAsmStreamer(OutContext, O, *T, 0)),
Chris Lattner
committed
Chris Lattner
committed
LastMI(0), LastFn(0), Counter(~0U),
Devang Patel
committed
PrevDLT(0, 0, ~0U, ~0U) {
Chris Lattner
committed
DW = 0; MMI = 0;
Evan Cheng
committed
switch (AsmVerbose) {
case cl::BOU_UNSET: VerboseAsm = VDef; break;
case cl::BOU_TRUE: VerboseAsm = true; break;
case cl::BOU_FALSE: VerboseAsm = false; break;
}
}
Gordon Henriksen
committed
AsmPrinter::~AsmPrinter() {
for (gcp_iterator I = GCMetadataPrinters.begin(),
E = GCMetadataPrinters.end(); I != E; ++I)
delete I->second;
Chris Lattner
committed
delete &OutStreamer;
delete &OutContext;
Gordon Henriksen
committed
}
TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
return TM.getTargetLowering()->getObjFileLowering();
}
Chris Lattner
committed
/// getCurrentSection() - Return the current section we are emitting to.
const MCSection *AsmPrinter::getCurrentSection() const {
return OutStreamer.getCurrentSection();
Chris Lattner
committed
Gordon Henriksen
committed
void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
Gordon Henriksen
committed
MachineFunctionPass::getAnalysisUsage(AU);
AU.addRequired<GCModuleInfo>();
Gordon Henriksen
committed
}
bool AsmPrinter::doInitialization(Module &M) {
// Initialize TargetLoweringObjectFile.
const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
.Initialize(OutContext, TM);
Mang = new Mangler(M, MAI->getGlobalPrefix(), MAI->getPrivateGlobalPrefix(),
MAI->getLinkerPrivateGlobalPrefix());
if (MAI->doesAllowQuotesInName())
Mang->setUseQuotes(true);
Anton Korobeynikov
committed
if (MAI->doesAllowNameToStartWithDigit())
Mang->setSymbolsCanStartWithDigit(true);
// Allow the target to emit any magic that it wants at the start of the file.
EmitStartOfAsmFile(M);
if (MAI->hasSingleParameterDotFile()) {
/* Very minimal debug info. It is ignored if we emit actual
debug info. If we don't, this at least helps the user find where
a function came from. */
O << "\t.file\t\"" << M.getModuleIdentifier() << "\"\n";
}
GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
assert(MI && "AsmPrinter didn't require GCModuleInfo?");
for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
MP->beginAssembly(O, *this, *MAI);
Gordon Henriksen
committed
O << MAI->getCommentString() << " Start of file scope inline assembly\n"
<< '\n' << MAI->getCommentString()
<< " End of file scope inline assembly\n";
Chris Lattner
committed
MMI = getAnalysisIfAvailable<MachineModuleInfo>();
if (MMI)
MMI->AnalyzeModule(M);
DW = getAnalysisIfAvailable<DwarfWriter>();
if (DW)
DW->BeginModule(&M, MMI, O, this, MAI);
return false;
}
bool AsmPrinter::doFinalization(Module &M) {
// Emit global variables.
for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I)
PrintGlobalVariable(I);
// Emit final debug information.
if (MAI->doesSupportDebugInformation() || MAI->doesSupportExceptionHandling())
DW->EndModule();
// If the target wants to know about weak references, print them all.
if (MAI->getWeakRefDirective()) {
// FIXME: This is not lazy, it would be nice to only print weak references
// to stuff that is actually used. Note that doing so would require targets
// to notice uses in operands (due to constant exprs etc). This should
// happen with the MC stuff eventually.
// Print out module-level global variables here.
for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I) {
if (I->hasExternalWeakLinkage())
O << MAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n';
for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
if (I->hasExternalWeakLinkage())
O << MAI->getWeakRefDirective() << Mang->getMangledName(I) << '\n';
if (MAI->getSetDirective()) {
O << '\n';
for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
I != E; ++I) {
std::string Name = Mang->getMangledName(I);
Anton Korobeynikov
committed
const GlobalValue *GV = cast<GlobalValue>(I->getAliasedGlobal());
std::string Target = Mang->getMangledName(GV);
if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
O << "\t.globl\t" << Name << '\n';
else if (I->hasWeakLinkage())
O << MAI->getWeakRefDirective() << Name << '\n';
llvm_unreachable("Invalid alias linkage");
O << MAI->getSetDirective() << ' ' << Name << ", " << Target << '\n';
}
}
GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
assert(MI && "AsmPrinter didn't require GCModuleInfo?");
for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
MP->finishAssembly(O, *this, *MAI);
Gordon Henriksen
committed
// If we don't have any trampolines, then we don't require stack memory
// to be executable. Some targets have a directive to declare this.
Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
if (MAI->getNonexecutableStackDirective())
O << MAI->getNonexecutableStackDirective() << '\n';
// Allow the target to emit any magic that it wants at the end of the file,
// after everything else has gone out.
EmitEndOfAsmFile(M);
delete Mang; Mang = 0;
Chris Lattner
committed
DW = 0; MMI = 0;
Chris Lattner
committed
OutStreamer.Finish();
return false;
}
void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
// What's my mangled name?
CurrentFnName = Mang->getMangledName(MF.getFunction());
if (VerboseAsm)
Evan Cheng
committed
namespace {
// SectionCPs - Keep track the alignment, constpool entries per Section.
struct SectionCPs {
const MCSection *S;
Evan Cheng
committed
unsigned Alignment;
SmallVector<unsigned, 4> CPEs;
SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {};
Evan Cheng
committed
};
}
Chris Lattner
committed
/// EmitConstantPool - Print to the current output stream assembly
/// representations of the constants in the constant pool MCP. This is
/// used to print out constants which have been "spilled to memory" by
/// the code generator.
///
void AsmPrinter::EmitConstantPool(MachineConstantPool *MCP) {
const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
Chris Lattner
committed
if (CP.empty()) return;
// Calculate sections for constant pool entries. We collect entries to go into
// the same section together to reduce amount of section switch statements.
Evan Cheng
committed
SmallVector<SectionCPs, 4> CPSections;
for (unsigned i = 0, e = CP.size(); i != e; ++i) {
const MachineConstantPoolEntry &CPE = CP[i];
Evan Cheng
committed
unsigned Align = CPE.getAlignment();
SectionKind Kind;
switch (CPE.getRelocationInfo()) {
default: llvm_unreachable("Unknown section kind");
case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
case 1:
Kind = SectionKind::getReadOnlyWithRelLocal();
break;
switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
case 4: Kind = SectionKind::getMergeableConst4(); break;
case 8: Kind = SectionKind::getMergeableConst8(); break;
case 16: Kind = SectionKind::getMergeableConst16();break;
default: Kind = SectionKind::getMergeableConst(); break;
const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
Evan Cheng
committed
// The number of sections are small, just do a linear search from the
// last section to the first.
bool Found = false;
unsigned SecIdx = CPSections.size();
while (SecIdx != 0) {
if (CPSections[--SecIdx].S == S) {
Found = true;
break;
}
}
if (!Found) {
SecIdx = CPSections.size();
CPSections.push_back(SectionCPs(S, Align));
}
if (Align > CPSections[SecIdx].Alignment)
CPSections[SecIdx].Alignment = Align;
CPSections[SecIdx].CPEs.push_back(i);
}
// Now print stuff into the calculated sections.
Evan Cheng
committed
for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
OutStreamer.SwitchSection(CPSections[i].S);
Evan Cheng
committed
EmitAlignment(Log2_32(CPSections[i].Alignment));
Evan Cheng
committed
unsigned Offset = 0;
for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
unsigned CPI = CPSections[i].CPEs[j];
MachineConstantPoolEntry CPE = CP[CPI];
// Emit inter-object padding for alignment.
unsigned AlignMask = CPE.getAlignment() - 1;
unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
EmitZeros(NewOffset - Offset);
const Type *Ty = CPE.getType();
Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty);
O << MAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
<< CPI << ':';
Evan Cheng
committed
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << " constant ";
WriteTypeSymbolic(O, CPE.getType(), MF->getFunction()->getParent());
Evan Cheng
committed
}
O << '\n';
Evan Cheng
committed
if (CPE.isMachineConstantPoolEntry())
EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
else
Evan Cheng
committed
EmitGlobalConstant(CPE.Val.ConstVal);
Chris Lattner
committed
}
}
/// EmitJumpTableInfo - Print assembly representations of the jump tables used
/// by the current function to the current output stream.
///
void AsmPrinter::EmitJumpTableInfo(MachineJumpTableInfo *MJTI,
MachineFunction &MF) {
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
if (JT.empty()) return;
Anton Korobeynikov
committed
bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
// Pick the directive to use to print the jump table entries, and switch to
// the appropriate section.
TargetLowering *LoweringInfo = TM.getTargetLowering();
const Function *F = MF.getFunction();
Evan Cheng
committed
bool JTInDiffSection = false;
if (F->isWeakForLinker() ||
(IsPic && !LoweringInfo->usesGlobalOffsetTable())) {
// In PIC mode, we need to emit the jump table to the same section as the
// function body itself, otherwise the label differences won't make sense.
// We should also do if the section name is NULL or function is declared in
// discardable section.
OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang,
TM));
// Otherwise, drop it in the readonly section.
const MCSection *ReadOnlySection =
getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
OutStreamer.SwitchSection(ReadOnlySection);
Evan Cheng
committed
JTInDiffSection = true;
EmitAlignment(Log2_32(MJTI->getAlignment()));
Chris Lattner
committed
for (unsigned i = 0, e = JT.size(); i != e; ++i) {
const std::vector<MachineBasicBlock*> &JTBBs = JT[i].MBBs;
// If this jump table was deleted, ignore it.
if (JTBBs.empty()) continue;
// For PIC codegen, if possible we want to use the SetDirective to reduce
// the number of relocations the assembler will generate for the jump table.
// Set directives are all printed before the jump table itself.
SmallPtrSet<MachineBasicBlock*, 16> EmittedSets;
if (MAI->getSetDirective() && IsPic)
for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
if (EmittedSets.insert(JTBBs[ii]))
printPICJumpTableSetLabel(i, JTBBs[ii]);
// On some targets (e.g. Darwin) we want to emit two consequtive labels
Chris Lattner
committed
// before each jump table. The first label is never referenced, but tells
// the assembler and linker the extents of the jump table object. The
// second label is actually referenced by the code.
if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0]) {
O << MAI->getLinkerPrivateGlobalPrefix()
<< "JTI" << getFunctionNumber() << '_' << i << ":\n";
Evan Cheng
committed
}
Chris Lattner
committed
O << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
Anton Korobeynikov
committed
printPICJumpTableEntry(MJTI, JTBBs[ii], i);
O << '\n';
}
}
}
Anton Korobeynikov
committed
void AsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
const MachineBasicBlock *MBB,
unsigned uid) const {
bool isPIC = TM.getRelocationModel() == Reloc::PIC_;
Anton Korobeynikov
committed
// Use JumpTableDirective otherwise honor the entry size from the jump table
// info.
const char *JTEntryDirective = MAI->getJumpTableDirective(isPIC);
Anton Korobeynikov
committed
bool HadJTEntryDirective = JTEntryDirective != NULL;
if (!HadJTEntryDirective) {
JTEntryDirective = MJTI->getEntrySize() == 4 ?
MAI->getData32bitsDirective() : MAI->getData64bitsDirective();
Anton Korobeynikov
committed
}
O << JTEntryDirective << ' ';
// If we have emitted set directives for the jump table entries, print
// them rather than the entries themselves. If we're emitting PIC, then
// emit the table entries as differences between two text section labels.
// If we're emitting non-PIC code, then emit the entries as direct
// references to the target basic blocks.
if (!isPIC) {
GetMBBSymbol(MBB->getNumber())->print(O, MAI);
} else if (MAI->getSetDirective()) {
O << MAI->getPrivateGlobalPrefix() << getFunctionNumber()
<< '_' << uid << "_set_" << MBB->getNumber();
Anton Korobeynikov
committed
} else {
GetMBBSymbol(MBB->getNumber())->print(O, MAI);
// If the arch uses custom Jump Table directives, don't calc relative to
// JT
if (!HadJTEntryDirective)
O << '-' << MAI->getPrivateGlobalPrefix() << "JTI"
<< getFunctionNumber() << '_' << uid;
Anton Korobeynikov
committed
}
}
/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
/// special global used by LLVM. If so, emit it and return true, otherwise
/// do nothing and return false.
bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
if (MAI->getUsedDirective() != 0) // No need to emit this at all.
EmitLLVMUsedList(GV->getInitializer());
return true;
}
Chris Lattner
committed
// Ignore debug and non-emitted data. This handles llvm.compiler.used.
if (GV->getSection() == "llvm.metadata" ||
GV->hasAvailableExternallyLinkage())
return true;
if (!GV->hasAppendingLinkage()) return false;
assert(GV->hasInitializer() && "Not a special LLVM global!");
Evan Cheng
committed
const TargetData *TD = TM.getTargetData();
unsigned Align = Log2_32(TD->getPointerPrefAlignment());
if (GV->getName() == "llvm.global_ctors") {
OutStreamer.SwitchSection(getObjFileLowering().getStaticCtorSection());
EmitAlignment(Align, 0);
EmitXXStructorList(GV->getInitializer());
return true;
}
if (GV->getName() == "llvm.global_dtors") {
OutStreamer.SwitchSection(getObjFileLowering().getStaticDtorSection());
EmitAlignment(Align, 0);
EmitXXStructorList(GV->getInitializer());
return true;
}
return false;
}
/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
/// global in the specified llvm.used list for which emitUsedDirectiveFor
/// is true, as being used with this directive.
void AsmPrinter::EmitLLVMUsedList(Constant *List) {
const char *Directive = MAI->getUsedDirective();
ConstantArray *InitList = dyn_cast<ConstantArray>(List);
if (InitList == 0) return;
for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
Chris Lattner
committed
const GlobalValue *GV =
dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) {
O << Directive;
EmitConstantValueOnly(InitList->getOperand(i));
O << '\n';
}
}
}
/// EmitXXStructorList - Emit the ctor or dtor list. This just prints out the
/// function pointers, ignoring the init priority.
void AsmPrinter::EmitXXStructorList(Constant *List) {
// Should be an array of '{ int, void ()* }' structs. The first value is the
// init priority, which we ignore.
if (!isa<ConstantArray>(List)) return;
ConstantArray *InitList = cast<ConstantArray>(List);
for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
if (CS->getOperand(1)->isNullValue())
return; // Found a null terminator, exit printing.
// Emit the function pointer.
EmitGlobalConstant(CS->getOperand(1));
}
}
Chris Lattner
committed
//===----------------------------------------------------------------------===//
/// LEB 128 number encoding.
/// PrintULEB128 - Print a series of hexidecimal values (separated by commas)
/// representing an unsigned leb128 value.
void AsmPrinter::PrintULEB128(unsigned Value) const {
unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
Value >>= 7;
if (Value) Byte |= 0x80;
O << "0x" << utohex_buffer(Byte, Buffer+20);
if (Value) O << ", ";
} while (Value);
}
/// PrintSLEB128 - Print a series of hexidecimal values (separated by commas)
/// representing a signed leb128 value.
void AsmPrinter::PrintSLEB128(int Value) const {
int Sign = Value >> (8 * sizeof(Value) - 1);
bool IsMore;
Anton Korobeynikov
committed
unsigned char Byte = static_cast<unsigned char>(Value & 0x7f);
Value >>= 7;
IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
if (IsMore) Byte |= 0x80;
O << "0x" << utohex_buffer(Byte, Buffer+20);
if (IsMore) O << ", ";
} while (IsMore);
}
//===--------------------------------------------------------------------===//
// Emission and print routines
//
/// PrintHex - Print a value as a hexidecimal value.
///
void AsmPrinter::PrintHex(int Value) const {
char Buffer[20];
O << "0x" << utohex_buffer(static_cast<unsigned>(Value), Buffer+20);
}
/// EOL - Print a newline character to asm stream. If a comment is present
/// then it will be printed first. Comments should not contain '\n'.
O << '\n';
Owen Anderson
committed
void AsmPrinter::EOL(const std::string &Comment) const {
if (VerboseAsm && !Comment.empty()) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< Comment;
}
O << '\n';
Owen Anderson
committed
void AsmPrinter::EOL(const char* Comment) const {
if (VerboseAsm && *Comment) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
Owen Anderson
committed
<< ' '
<< Comment;
}
O << '\n';
}
Bill Wendling
committed
static const char *DecodeDWARFEncoding(unsigned Encoding) {
switch (Encoding) {
case dwarf::DW_EH_PE_absptr:
return "absptr";
case dwarf::DW_EH_PE_omit:
return "omit";
case dwarf::DW_EH_PE_pcrel:
return "pcrel";
case dwarf::DW_EH_PE_udata4:
return "udata4";
case dwarf::DW_EH_PE_udata8:
return "udata8";
case dwarf::DW_EH_PE_sdata4:
return "sdata4";
case dwarf::DW_EH_PE_sdata8:
return "sdata8";
Bill Wendling
committed
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata4:
return "pcrel udata4";
case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4:
return "pcrel sdata4";
case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata8:
return "pcrel udata8";
case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8:
return "pcrel sdata8";
case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_udata4:
return "indirect pcrel udata4";
case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_sdata4:
return "indirect pcrel sdata4";
case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_udata8:
return "indirect pcrel udata8";
case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |dwarf::DW_EH_PE_sdata8:
return "indirect pcrel sdata8";
}
return 0;
}
void AsmPrinter::EOL(const char *Comment, unsigned Encoding) const {
if (VerboseAsm && *Comment) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< ' '
<< Comment;
if (const char *EncStr = DecodeDWARFEncoding(Encoding))
O << " (" << EncStr << ')';
}
O << '\n';
}
Owen Anderson
committed
/// EmitULEB128Bytes - Emit an assembler byte data directive to compose an
/// unsigned leb128 value.
void AsmPrinter::EmitULEB128Bytes(unsigned Value) const {
if (MAI->hasLEB128()) {
O << "\t.uleb128\t"
<< Value;
} else {
O << MAI->getData8bitsDirective();
PrintULEB128(Value);
}
}
/// EmitSLEB128Bytes - print an assembler byte data directive to compose a
/// signed leb128 value.
void AsmPrinter::EmitSLEB128Bytes(int Value) const {
if (MAI->hasLEB128()) {
O << "\t.sleb128\t"
<< Value;
} else {
O << MAI->getData8bitsDirective();
PrintSLEB128(Value);
}
}
/// EmitInt8 - Emit a byte directive and value.
///
void AsmPrinter::EmitInt8(int Value) const {
O << MAI->getData8bitsDirective();
PrintHex(Value & 0xFF);
}
/// EmitInt16 - Emit a short directive and value.
///
void AsmPrinter::EmitInt16(int Value) const {
O << MAI->getData16bitsDirective();
PrintHex(Value & 0xFFFF);
}
/// EmitInt32 - Emit a long directive and value.
///
void AsmPrinter::EmitInt32(int Value) const {
O << MAI->getData32bitsDirective();
PrintHex(Value);
}
/// EmitInt64 - Emit a long long directive and value.
///
void AsmPrinter::EmitInt64(uint64_t Value) const {
if (MAI->getData64bitsDirective()) {
O << MAI->getData64bitsDirective();
PrintHex(Value);
} else {
if (TM.getTargetData()->isBigEndian()) {
EmitInt32(unsigned(Value >> 32)); O << '\n';
EmitInt32(unsigned(Value));
} else {
EmitInt32(unsigned(Value)); O << '\n';
EmitInt32(unsigned(Value >> 32));
}
}
}
/// toOctal - Convert the low order bits of X into an octal digit.
///
static inline char toOctal(int X) {
return (X&7)+'0';
}
/// printStringChar - Print a char, escaped if necessary.
///
if (C == '"') {
O << "\\\"";
} else if (C == '\\') {
O << "\\\\";
} else if (isprint((unsigned char)C)) {
O << C;
} else {
switch(C) {
case '\b': O << "\\b"; break;
case '\f': O << "\\f"; break;
case '\n': O << "\\n"; break;
case '\r': O << "\\r"; break;
case '\t': O << "\\t"; break;
default:
O << '\\';
O << toOctal(C >> 6);
O << toOctal(C >> 3);
O << toOctal(C >> 0);
break;
}
}
}
/// EmitString - Emit a string with quotes and a null terminator.
/// Special characters are emitted properly.
/// \literal (Eg. '\t') \endliteral
void AsmPrinter::EmitString(const std::string &String) const {
Bill Wendling
committed
EmitString(String.c_str(), String.size());
}
void AsmPrinter::EmitString(const char *String, unsigned Size) const {
const char* AscizDirective = MAI->getAscizDirective();
if (AscizDirective)
O << AscizDirective;
else
O << MAI->getAsciiDirective();
O << '\"';
Bill Wendling
committed
for (unsigned i = 0; i < Size; ++i)
printStringChar(O, String[i]);
if (AscizDirective)
O << '\"';
else
O << "\\0\"";
}
/// EmitFile - Emit a .file directive.
void AsmPrinter::EmitFile(unsigned Number, const std::string &Name) const {
O << "\t.file\t" << Number << " \"";
for (unsigned i = 0, N = Name.size(); i < N; ++i)
printStringChar(O, Name[i]);
O << '\"';
//===----------------------------------------------------------------------===//
// EmitAlignment - Emit an alignment directive to the specified power of
// two boundary. For example, if you pass in 3 here, you will get an 8
// byte alignment. If a global value is specified, and if that global has
// an explicit alignment requested, it will unconditionally override the
// alignment request. However, if ForcedAlignBits is specified, this value
// has final say: the ultimate alignment will be the max of ForcedAlignBits
// and the alignment computed with NumBits and the global.
//
// The algorithm is:
// Align = NumBits;
// if (GV && GV->hasalignment) Align = GV->getalignment();
// Align = std::max(Align, ForcedAlignBits);
//
void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV,
unsigned ForcedAlignBits,
bool UseFillExpr) const {
NumBits = Log2_32(GV->getAlignment());
NumBits = std::max(NumBits, ForcedAlignBits);
if (NumBits == 0) return; // No need to emit alignment.
unsigned FillValue = 0;
Chris Lattner
committed
if (getCurrentSection()->getKind().isText())
FillValue = MAI->getTextAlignFillValue();
OutStreamer.EmitValueToAlignment(1 << NumBits, FillValue, 1, 0);
/// EmitZeros - Emit a block of zeros.
Sanjiv Gupta
committed
void AsmPrinter::EmitZeros(uint64_t NumZeros, unsigned AddrSpace) const {
if (MAI->getZeroDirective()) {
O << MAI->getZeroDirective() << NumZeros;
if (MAI->getZeroDirectiveSuffix())
O << MAI->getZeroDirectiveSuffix();
O << '\n';
for (; NumZeros; --NumZeros)
O << MAI->getData8bitsDirective(AddrSpace) << "0\n";
// Print out the specified constant, without a storage class. Only the
// constants valid in constant expressions can occur here.
void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
O << '0';
} else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
// This is a constant address for a global variable or function. Use the
Chris Lattner
committed
// name of the variable or function as the address value.
O << Mang->getMangledName(GV);
} else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
const TargetData *TD = TM.getTargetData();
unsigned Opcode = CE->getOpcode();
switch (Opcode) {
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
llvm_unreachable("FIXME: Don't support this constant cast expr");
case Instruction::GetElementPtr: {
// generate a symbolic expression for the byte address
const Constant *ptrVal = CE->getOperand(0);
SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
if (int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
idxVec.size())) {
// Truncate/sext the offset to the pointer size.
if (TD->getPointerSizeInBits() != 64) {
int SExtAmount = 64-TD->getPointerSizeInBits();
Offset = (Offset << SExtAmount) >> SExtAmount;
}
if (Offset)
O << '(';
EmitConstantValueOnly(ptrVal);
if (Offset > 0)
O << ") + " << Offset;
else if (Offset < 0)
O << ") - " << -Offset;
EmitConstantValueOnly(ptrVal);
case Instruction::BitCast:
return EmitConstantValueOnly(CE->getOperand(0));
case Instruction::IntToPtr: {
// Handle casts to pointers by changing them into casts to the appropriate
// integer type. This promotes constant folding and simplifies this code.
Constant *Op = CE->getOperand(0);
Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(CV->getContext()),
false/*ZExt*/);
return EmitConstantValueOnly(Op);
}
case Instruction::PtrToInt: {
// Support only foldable casts to/from pointers that can be eliminated by
// changing the pointer to the appropriately sized integer type.
Constant *Op = CE->getOperand(0);
const Type *Ty = CE->getType();
// We can emit the pointer value into this slot if the slot is an
// integer slot greater or equal to the size of the pointer.
if (TD->getTypeAllocSize(Ty) == TD->getTypeAllocSize(Op->getType()))
return EmitConstantValueOnly(Op);
Nick Lewycky
committed
O << "((";
EmitConstantValueOnly(Op);
APInt ptrMask =
APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Op->getType()));
SmallString<40> S;
ptrMask.toStringUnsigned(S);
O << ") & " << S.str() << ')';
break;
}
case Instruction::Add:
case Instruction::Sub:
Anton Korobeynikov
committed
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
O << '(';
EmitConstantValueOnly(CE->getOperand(0));
O << ')';
Anton Korobeynikov
committed
switch (Opcode) {
case Instruction::Add:
O << " + ";
break;
case Instruction::Sub:
O << " - ";
break;
case Instruction::And:
O << " & ";
break;
case Instruction::Or:
O << " | ";
break;
case Instruction::Xor:
O << " ^ ";
break;
default:
break;
}
O << '(';
EmitConstantValueOnly(CE->getOperand(1));
O << ')';
llvm_unreachable("Unsupported operator!");
} else if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
GetBlockAddressSymbol(BA)->print(O, MAI);
llvm_unreachable("Unknown constant value!");
/// printAsCString - Print the specified array as a C compatible string, only if
/// the predicate isString is true.
///
static void printAsCString(formatted_raw_ostream &O, const ConstantArray *CVA,
unsigned LastElt) {
assert(CVA->isString() && "Array is not string compatible!");
O << '\"';
for (unsigned i = 0; i != LastElt; ++i) {
(unsigned char)cast<ConstantInt>(CVA->getOperand(i))->getZExtValue();
printStringChar(O, C);
O << '\"';
Jeff Cohen
committed
/// EmitString - Emit a zero-byte-terminated string constant.
///
void AsmPrinter::EmitString(const ConstantArray *CVA) const {
unsigned NumElts = CVA->getNumOperands();
if (MAI->getAscizDirective() && NumElts &&
cast<ConstantInt>(CVA->getOperand(NumElts-1))->getZExtValue() == 0) {
O << MAI->getAscizDirective();
Jeff Cohen
committed
printAsCString(O, CVA, NumElts-1);
} else {
O << MAI->getAsciiDirective();
Jeff Cohen
committed
printAsCString(O, CVA, NumElts);
}
O << '\n';
Jeff Cohen
committed
}
void AsmPrinter::EmitGlobalConstantArray(const ConstantArray *CVA,
unsigned AddrSpace) {
if (CVA->isString()) {
EmitString(CVA);
} else { // Not a string. Print the values in successive locations
for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
EmitGlobalConstant(CVA->getOperand(i), AddrSpace);
}
}
void AsmPrinter::EmitGlobalConstantVector(const ConstantVector *CP) {
const VectorType *PTy = CP->getType();
for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
EmitGlobalConstant(CP->getOperand(I));
}
Sanjiv Gupta
committed
void AsmPrinter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
unsigned AddrSpace) {
// Print the fields in successive locations. Pad to align if needed!
const TargetData *TD = TM.getTargetData();
unsigned Size = TD->getTypeAllocSize(CVS->getType());
const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
uint64_t sizeSoFar = 0;
for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
const Constant* field = CVS->getOperand(i);
// Check if padding is needed and insert one or more 0s.
uint64_t fieldSize = TD->getTypeAllocSize(field->getType());
uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
- cvsLayout->getElementOffset(i)) - fieldSize;
sizeSoFar += fieldSize + padSize;
// Now print the actual field value.
Sanjiv Gupta
committed
EmitGlobalConstant(field, AddrSpace);
// Insert padding - this may include padding to increase the size of the
// current field up to the ABI size (if the struct is not packed) as well
// as padding to ensure that the next field starts at the right offset.
Sanjiv Gupta
committed
EmitZeros(padSize, AddrSpace);
}
assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
"Layout of constant struct may be incorrect!");
}
Sanjiv Gupta
committed
void AsmPrinter::EmitGlobalConstantFP(const ConstantFP *CFP,
unsigned AddrSpace) {
// FP Constants are printed as integer constants to avoid losing
// precision...
LLVMContext &Context = CFP->getContext();
const TargetData *TD = TM.getTargetData();
if (CFP->getType()->isDoubleTy()) {
double Val = CFP->getValueAPF().convertToDouble(); // for comment only
uint64_t i = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
if (MAI->getData64bitsDirective(AddrSpace)) {
O << MAI->getData64bitsDirective(AddrSpace) << i;
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << " double " << Val;
O << '\n';
} else if (TD->isBigEndian()) {
O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " most significant word of double " << Val;
O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " least significant word of double " << Val;
} else {
O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " least significant word of double " << Val;
O << MAI->getData32bitsDirective(AddrSpace) << unsigned(i >> 32);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " most significant word of double " << Val;
}
return;
}
if (CFP->getType()->isFloatTy()) {
float Val = CFP->getValueAPF().convertToFloat(); // for comment only
O << MAI->getData32bitsDirective(AddrSpace)
<< CFP->getValueAPF().bitcastToAPInt().getZExtValue();
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << " float " << Val;
return;
}
if (CFP->getType()->isX86_FP80Ty()) {
// all long double variants are printed as hex
// api needed to prevent premature destruction
APInt api = CFP->getValueAPF().bitcastToAPInt();
const uint64_t *p = api.getRawData();
// Convert to double so we can print the approximate val as a comment.
APFloat DoubleVal = CFP->getValueAPF();
bool ignored;
DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
&ignored);
if (TD->isBigEndian()) {
O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " most significant halfword of x86_fp80 ~"
O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << " next halfword";
O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << " next halfword";
O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << " next halfword";
O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " least significant halfword";
} else {
O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0]);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " least significant halfword of x86_fp80 ~"
O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 16);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " next halfword";
O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 32);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " next halfword";
O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[0] >> 48);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " next halfword";
O << MAI->getData16bitsDirective(AddrSpace) << uint16_t(p[1]);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " most significant halfword";
}
EmitZeros(TD->getTypeAllocSize(Type::getX86_FP80Ty(Context)) -
TD->getTypeStoreSize(Type::getX86_FP80Ty(Context)), AddrSpace);
return;
}
if (CFP->getType()->isPPC_FP128Ty()) {
// all long double variants are printed as hex
// api needed to prevent premature destruction
APInt api = CFP->getValueAPF().bitcastToAPInt();
const uint64_t *p = api.getRawData();
if (TD->isBigEndian()) {
O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " most significant word of ppc_fp128";
O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " next word";
O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " next word";
O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " least significant word";
} else {
O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1]);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " least significant word of ppc_fp128";
O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[1] >> 32);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " next word";
O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0]);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " next word";
O << MAI->getData32bitsDirective(AddrSpace) << uint32_t(p[0] >> 32);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " most significant word";
}
return;
} else llvm_unreachable("Floating point constant type not handled");
}
Sanjiv Gupta
committed
void AsmPrinter::EmitGlobalConstantLargeInt(const ConstantInt *CI,
unsigned AddrSpace) {
const TargetData *TD = TM.getTargetData();
unsigned BitWidth = CI->getBitWidth();
assert(isPowerOf2_32(BitWidth) &&
"Non-power-of-2-sized integers not handled!");
// We don't expect assemblers to support integer data directives
// for more than 64 bits, so we emit the data in at most 64-bit
// quantities at a time.
const uint64_t *RawData = CI->getValue().getRawData();
for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
uint64_t Val;
if (TD->isBigEndian())
Val = RawData[e - i - 1];
else
Val = RawData[i];
if (MAI->getData64bitsDirective(AddrSpace))
O << MAI->getData64bitsDirective(AddrSpace) << Val << '\n';
else if (TD->isBigEndian()) {
O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " most significant half of i64 " << Val;
O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " least significant half of i64 " << Val;
} else {
O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " least significant half of i64 " << Val;
O << MAI->getData32bitsDirective(AddrSpace) << unsigned(Val >> 32);
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString()
<< " most significant half of i64 " << Val;
}
}
}
/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
Sanjiv Gupta
committed
void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
const TargetData *TD = TM.getTargetData();
const Type *type = CV->getType();
unsigned Size = TD->getTypeAllocSize(type);
Sanjiv Gupta
committed
EmitZeros(Size, AddrSpace);
return;
} else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
EmitGlobalConstantArray(CVA , AddrSpace);
return;
} else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
Sanjiv Gupta
committed
EmitGlobalConstantStruct(CVS, AddrSpace);
return;
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
Sanjiv Gupta
committed
EmitGlobalConstantFP(CFP, AddrSpace);
return;
} else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
// Small integers are handled below; large integers are handled here.
if (Size > 4) {
Sanjiv Gupta
committed
EmitGlobalConstantLargeInt(CI, AddrSpace);
} else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
EmitGlobalConstantVector(CP);
return;
Sanjiv Gupta
committed
printDataDirective(type, AddrSpace);
EmitConstantValueOnly(CV);
if (VerboseAsm) {
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
SmallString<40> S;
CI->getValue().toStringUnsigned(S, 16);
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << " 0x" << S.str();
}
O << '\n';
void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
// Target doesn't support this yet!
llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
}
/// PrintSpecial - Print information related to the specified machine instr
/// that is independent of the operand, and may be independent of the instr
/// itself. This can be useful for portably encoding the comment character
/// or other bits of target-specific knowledge into the asmstrings. The
/// syntax used is ${:comment}. Targets can override this to add support
/// for their own strange codes.
void AsmPrinter::PrintSpecial(const MachineInstr *MI, const char *Code) const {
if (!strcmp(Code, "private")) {
O << MAI->getPrivateGlobalPrefix();
} else if (!strcmp(Code, "comment")) {
O << MAI->getCommentString();
} else if (!strcmp(Code, "uid")) {
// Comparing the address of MI isn't sufficient, because machineinstrs may
// be allocated to the same address across functions.
const Function *ThisF = MI->getParent()->getParent()->getFunction();
// If this is a new LastFn instruction, bump the counter.
if (LastMI != MI || LastFn != ThisF) {
O << Counter;
} else {
std::string msg;
raw_string_ostream Msg(msg);
Msg << "Unknown special formatter '" << Code
Bill Wendling
committed
<< "' for machine instr: " << *MI;
llvm_report_error(Msg.str());
}
}
Argyrios Kyrtzidis
committed
/// processDebugLoc - Processes the debug information of each machine
/// instruction's DebugLoc.
Devang Patel
committed
void AsmPrinter::processDebugLoc(const MachineInstr *MI,
bool BeforePrintingInsn) {
if (!MAI || !DW)
Chris Lattner
committed
return;
DebugLoc DL = MI->getDebugLoc();
if (MAI->doesSupportDebugInformation() && DW->ShouldEmitDwarfDebug()) {
Argyrios Kyrtzidis
committed
if (!DL.isUnknown()) {
DebugLocTuple CurDLT = MF->getDebugLocTuple(DL);
Devang Patel
committed
if (BeforePrintingInsn) {
if (CurDLT.Scope != 0 && PrevDLT != CurDLT) {
unsigned L = DW->RecordSourceLine(CurDLT.Line, CurDLT.Col,
printLabel(L);
#ifdef ATTACH_DEBUG_INFO_TO_AN_INSN
DW->SetDbgScopeBeginLabels(MI, L);
#endif
} else {
#ifdef ATTACH_DEBUG_INFO_TO_AN_INSN
DW->SetDbgScopeEndLabels(MI, 0);
#endif
Devang Patel
committed
}
Argyrios Kyrtzidis
committed
PrevDLT = CurDLT;
}
}
}
/// printInlineAsm - This method formats and prints the specified machine
/// instruction that is an inline asm.
void AsmPrinter::printInlineAsm(const MachineInstr *MI) const {
unsigned NumOperands = MI->getNumOperands();
// Count the number of register definitions.
unsigned NumDefs = 0;
for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
assert(NumDefs != NumOperands-1 && "No asm string?");
assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
// Disassemble the AsmStr, printing out the literal pieces, the operands, etc.
const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
// If this asmstr is empty, just print the #APP/#NOAPP markers.
// These are useful to see where empty asm's wound up.
if (AsmStr[0] == 0) {
O << MAI->getCommentString() << MAI->getInlineAsmStart() << "\n\t";
O << MAI->getCommentString() << MAI->getInlineAsmEnd() << '\n';
return;
}
O << MAI->getCommentString() << MAI->getInlineAsmStart() << "\n\t";
int AsmPrinterVariant = MAI->getAssemblerDialect();
int CurVariant = -1; // The number of the {.|.|.} region we are in.
const char *LastEmitted = AsmStr; // One past the last character emitted.
while (*LastEmitted) {
switch (*LastEmitted) {
default: {
// Not a special case, emit the string section literally.
const char *LiteralEnd = LastEmitted+1;
while (*LiteralEnd && *LiteralEnd != '{' && *LiteralEnd != '|' &&
*LiteralEnd != '}' && *LiteralEnd != '$' && *LiteralEnd != '\n')
++LiteralEnd;
if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
O.write(LastEmitted, LiteralEnd-LastEmitted);
LastEmitted = LiteralEnd;
break;
}
case '\n':
++LastEmitted; // Consume newline character.
O << '\n'; // Indent code with newline.
case '$': {
++LastEmitted; // Consume '$' character.
bool Done = true;
// Handle escapes.
switch (*LastEmitted) {
default: Done = false; break;
case '$': // $$ -> $
if (CurVariant == -1 || CurVariant == AsmPrinterVariant)
O << '$';
++LastEmitted; // Consume second '$' character.
break;
case '(': // $( -> same as GCC's { character.
++LastEmitted; // Consume '(' character.
if (CurVariant != -1) {
llvm_report_error("Nested variants found in inline asm string: '"
+ std::string(AsmStr) + "'");
}
CurVariant = 0; // We're in the first variant now.
break;
case '|':
++LastEmitted; // consume '|' character.
if (CurVariant == -1)
O << '|'; // this is gcc's behavior for | outside a variant
else
++CurVariant; // We're in the next variant.
break;
case ')': // $) -> same as GCC's } char.
++LastEmitted; // consume ')' character.
if (CurVariant == -1)
O << '}'; // this is gcc's behavior for } outside a variant
else
CurVariant = -1;
break;
}
if (Done) break;
bool HasCurlyBraces = false;
if (*LastEmitted == '{') { // ${variable}
++LastEmitted; // Consume '{' character.
HasCurlyBraces = true;
}
// If we have ${:foo}, then this is not a real operand reference, it is a
// "magic" string reference, just like in .td files. Arrange to call
// PrintSpecial.
if (HasCurlyBraces && *LastEmitted == ':') {
++LastEmitted;
const char *StrStart = LastEmitted;
const char *StrEnd = strchr(StrStart, '}');
if (StrEnd == 0) {
llvm_report_error("Unterminated ${:foo} operand in inline asm string: '"
+ std::string(AsmStr) + "'");
}
std::string Val(StrStart, StrEnd);
PrintSpecial(MI, Val.c_str());
LastEmitted = StrEnd+1;
break;
}
const char *IDStart = LastEmitted;
char *IDEnd;
long Val = strtol(IDStart, &IDEnd, 10); // We only accept numbers for IDs.
if (!isdigit(*IDStart) || (Val == 0 && errno == EINVAL)) {
llvm_report_error("Bad $ operand number in inline asm string: '"
+ std::string(AsmStr) + "'");
}
LastEmitted = IDEnd;
char Modifier[2] = { 0, 0 };
if (HasCurlyBraces) {
// If we have curly braces, check for a modifier character. This
// supports syntax like ${0:u}, which correspond to "%u0" in GCC asm.
if (*LastEmitted == ':') {
++LastEmitted; // Consume ':' character.
if (*LastEmitted == 0) {
llvm_report_error("Bad ${:} expression in inline asm string: '"
+ std::string(AsmStr) + "'");
}
Modifier[0] = *LastEmitted;
++LastEmitted; // Consume modifier character.
}
if (*LastEmitted != '}') {
llvm_report_error("Bad ${} expression in inline asm string: '"
+ std::string(AsmStr) + "'");
}
++LastEmitted; // Consume '}' character.
}
if ((unsigned)Val >= NumOperands-1) {
llvm_report_error("Invalid $ operand number in inline asm string: '"
+ std::string(AsmStr) + "'");
}
// Okay, we finally have a value number. Ask the target to print this
// operand!
if (CurVariant == -1 || CurVariant == AsmPrinterVariant) {
unsigned OpNo = 1;
// Scan to find the machine operand number for the operand.
for (; Val; --Val) {
if (OpNo >= MI->getNumOperands()) break;
unsigned OpFlags = MI->getOperand(OpNo).getImm();
Evan Cheng
committed
OpNo += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
if (OpNo >= MI->getNumOperands()) {
Error = true;
unsigned OpFlags = MI->getOperand(OpNo).getImm();
++OpNo; // Skip over the ID number.
if (Modifier[0]=='l') // labels are target independent
GetMBBSymbol(MI->getOperand(OpNo).getMBB()
->getNumber())->print(O, MAI);
else {
AsmPrinter *AP = const_cast<AsmPrinter*>(this);
if ((OpFlags & 7) == 4) {
Error = AP->PrintAsmMemoryOperand(MI, OpNo, AsmPrinterVariant,
Modifier[0] ? Modifier : 0);
} else {
Error = AP->PrintAsmOperand(MI, OpNo, AsmPrinterVariant,
Modifier[0] ? Modifier : 0);
}
}
if (Error) {
std::string msg;
raw_string_ostream Msg(msg);
Msg << "Invalid operand found in inline asm: '"
Bill Wendling
committed
<< AsmStr << "'\n";
MI->print(Msg);
llvm_report_error(Msg.str());
}
}
break;
}
}
}
O << "\n\t" << MAI->getCommentString() << MAI->getInlineAsmEnd();
}
/// printImplicitDef - This method prints the specified machine instruction
/// that is an implicit def.
void AsmPrinter::printImplicitDef(const MachineInstr *MI) const {
if (!VerboseAsm) return;
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << " implicit-def: "
<< TRI->getName(MI->getOperand(0).getReg());
}
/// printLabel - This method prints a local label used by debug and
/// exception handling tables.
void AsmPrinter::printLabel(const MachineInstr *MI) const {
printLabel(MI->getOperand(0).getImm());
Evan Cheng
committed
void AsmPrinter::printLabel(unsigned Id) const {
O << MAI->getPrivateGlobalPrefix() << "label" << Id << ':';
Evan Cheng
committed
}
/// PrintAsmOperand - Print the specified operand of MI, an INLINEASM
/// instruction, using the specified assembler variant. Targets should
/// overried this to format as appropriate.
bool AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant, const char *ExtraCode) {
// Target doesn't support this yet!
return true;
bool AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant,
const char *ExtraCode) {
// Target doesn't support this yet!
return true;
}
MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
return GetBlockAddressSymbol(BA->getFunction(), BA->getBasicBlock());
}
MCSymbol *AsmPrinter::GetBlockAddressSymbol(const Function *F,
const BasicBlock *BB) const {
assert(BB->hasName() &&
"Address of anonymous basic block not supported yet!");
// FIXME: This isn't guaranteed to produce a unique name even if the
// block and function have a name.
std::string Mangled =
Mang->getMangledName(F, Mang->makeNameProper(BB->getName()).c_str(),
/*ForcePrivate=*/true);
return OutContext.GetOrCreateSymbol(StringRef(Mangled));
}
MCSymbol *AsmPrinter::GetMBBSymbol(unsigned MBBID) const {
SmallString<60> Name;
raw_svector_ostream(Name) << MAI->getPrivateGlobalPrefix() << "BB"
<< getFunctionNumber() << '_' << MBBID;
return OutContext.GetOrCreateSymbol(Name.str());
}
/// EmitBasicBlockStart - This method prints the label for the specified
/// MachineBasicBlock, an alignment (if present) and a comment describing
/// it if appropriate.
void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
// Emit an alignment directive for this block, if needed.
if (unsigned Align = MBB->getAlignment())
EmitAlignment(Log2_32(Align));
Evan Cheng
committed
// If the block has its address taken, emit a special label to satisfy
// references to the block. This is done so that we don't need to
// remember the number of this label, and so that we can make
// forward references to labels without knowing what their numbers
// will be.
if (MBB->hasAddressTaken()) {
GetBlockAddressSymbol(MBB->getBasicBlock()->getParent(),
MBB->getBasicBlock())->print(O, MAI);
O << ':';
if (VerboseAsm) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << " Address Taken";
}
O << '\n';
}
if (MBB->pred_empty() || MBB->isOnlyReachableByFallthrough()) {
if (VerboseAsm)
O << MAI->getCommentString() << " BB#" << MBB->getNumber() << ':';
} else {
GetMBBSymbol(MBB->getNumber())->print(O, MAI);
O << ':';
if (!VerboseAsm)
O << '\n';
}
if (VerboseAsm) {
if (const BasicBlock *BB = MBB->getBasicBlock())
if (BB->hasName()) {
O.PadToColumn(MAI->getCommentColumn());
O << MAI->getCommentString() << ' ';
WriteAsOperand(O, BB, /*PrintType=*/false);
EmitComments(*MBB);
O << '\n';
}
/// printPICJumpTableSetLabel - This method prints a set label for the
/// specified MachineBasicBlock for a jumptable entry.
void AsmPrinter::printPICJumpTableSetLabel(unsigned uid,
const MachineBasicBlock *MBB) const {
if (!MAI->getSetDirective())
return;
O << MAI->getSetDirective() << ' ' << MAI->getPrivateGlobalPrefix()
<< getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
GetMBBSymbol(MBB->getNumber())->print(O, MAI);
O << '-' << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
}
void AsmPrinter::printPICJumpTableSetLabel(unsigned uid, unsigned uid2,
const MachineBasicBlock *MBB) const {
if (!MAI->getSetDirective())
O << MAI->getSetDirective() << ' ' << MAI->getPrivateGlobalPrefix()
<< getFunctionNumber() << '_' << uid << '_' << uid2
<< "_set_" << MBB->getNumber() << ',';
GetMBBSymbol(MBB->getNumber())->print(O, MAI);
O << '-' << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
/// printDataDirective - This method prints the asm directive for the
/// specified type.
Sanjiv Gupta
committed
void AsmPrinter::printDataDirective(const Type *type, unsigned AddrSpace) {
const TargetData *TD = TM.getTargetData();
switch (type->getTypeID()) {
case Type::FloatTyID: case Type::DoubleTyID:
case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID:
assert(0 && "Should have already output floating point constant.");
default:
assert(0 && "Can't handle printing this type of thing");
case Type::IntegerTyID: {
unsigned BitWidth = cast<IntegerType>(type)->getBitWidth();
if (BitWidth <= 8)
O << MAI->getData8bitsDirective(AddrSpace);
O << MAI->getData16bitsDirective(AddrSpace);
O << MAI->getData32bitsDirective(AddrSpace);
assert(MAI->getData64bitsDirective(AddrSpace) &&
O << MAI->getData64bitsDirective(AddrSpace);
} else {
llvm_unreachable("Target cannot handle given data directive width!");
break;
case Type::PointerTyID:
if (TD->getPointerSize() == 8) {
Loading
Loading full blame...