"lld/lib/git@repo.hca.bsc.es:rferrer/llvm-epi-0.8.git" did not exist on "5a722e92afe8f0c73303ff903bc0077b1eb299a8"
Newer
Older
V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
if (HiIndex >= 2) {
Mask1[0] = PermMask[0];
Mask1[1] = PermMask[1];
Mask1[2] = HiIndex & 1 ? 6 : 4;
Mask1[3] = HiIndex & 1 ? 4 : 6;
return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
} else {
Mask1[0] = HiIndex & 1 ? 2 : 0;
Mask1[1] = HiIndex & 1 ? 0 : 2;
Mask1[2] = PermMask[2];
Mask1[3] = PermMask[3];
if (Mask1[2] >= 0)
Mask1[2] += 4;
if (Mask1[3] >= 0)
Mask1[3] += 4;
return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
}
Evan Cheng
committed
}
// Break it into (shuffle shuffle_hi, shuffle_lo).
Locs.clear();
SmallVector<int,8> LoMask(4U, -1);
SmallVector<int,8> HiMask(4U, -1);
SmallVector<int,8> *MaskPtr = &LoMask;
Evan Cheng
committed
unsigned MaskIdx = 0;
unsigned LoIdx = 0;
unsigned HiIdx = 2;
for (unsigned i = 0; i != 4; ++i) {
if (i == 2) {
MaskPtr = &HiMask;
MaskIdx = 1;
LoIdx = 0;
HiIdx = 2;
}
int Idx = PermMask[i];
if (Idx < 0) {
Evan Cheng
committed
Locs[i] = std::make_pair(-1, -1);
} else if (Idx < 4) {
Evan Cheng
committed
Locs[i] = std::make_pair(MaskIdx, LoIdx);
(*MaskPtr)[LoIdx] = Idx;
Evan Cheng
committed
LoIdx++;
} else {
Locs[i] = std::make_pair(MaskIdx, HiIdx);
(*MaskPtr)[HiIdx] = Idx;
Evan Cheng
committed
HiIdx++;
}
}
SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
SmallVector<int, 8> MaskOps;
Evan Cheng
committed
for (unsigned i = 0; i != 4; ++i) {
if (Locs[i].first == -1) {
MaskOps.push_back(-1);
Evan Cheng
committed
} else {
unsigned Idx = Locs[i].first * 4 + Locs[i].second;
MaskOps.push_back(Idx);
Evan Cheng
committed
}
}
return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
Evan Cheng
committed
}
SDValue
X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
MVT VT = Op.getValueType();
DebugLoc dl = Op.getDebugLoc();
unsigned NumElems = VT.getVectorNumElements();
bool isMMX = VT.getSizeInBits() == 64;
bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
Evan Cheng
committed
bool V1IsSplat = false;
bool V2IsSplat = false;
if (isZeroShuffle(SVOp))
return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
// Promote splats to v4f32.
if (SVOp->isSplat()) {
if (isMMX || NumElems < 4)
return Op;
return PromoteSplat(SVOp, DAG, Subtarget->hasSSE2());
Evan Cheng
committed
// If the shuffle can be profitably rewritten as a narrower shuffle, then
// do it!
if (VT == MVT::v8i16 || VT == MVT::v16i8) {
SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
Gabor Greif
committed
if (NewOp.getNode())
return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
LowerVECTOR_SHUFFLE(NewOp, DAG));
Evan Cheng
committed
} else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
// FIXME: Figure out a cleaner way to do this.
// Try to make use of movq to zero out the top part.
Gabor Greif
committed
if (ISD::isBuildVectorAllZeros(V2.getNode())) {
SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
Gabor Greif
committed
if (NewOp.getNode()) {
if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
DAG, Subtarget, dl);
Evan Cheng
committed
}
Gabor Greif
committed
} else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
DAG, Subtarget, dl);
Evan Cheng
committed
}
}
if (X86::isPSHUFDMask(SVOp))
return Op;
// Check if this can be converted into a logical shift.
bool isLeft = false;
unsigned ShAmt = 0;
bool isShift = getSubtarget()->hasSSE2() &&
isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
if (isShift && ShVal.hasOneUse()) {
// If the shifted value has multiple uses, it may be cheaper to use
// v_set0 + movlhps or movhlps, etc.
MVT EVT = VT.getVectorElementType();
ShAmt *= EVT.getSizeInBits();
return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
}
if (X86::isMOVLMask(SVOp)) {
Evan Cheng
committed
if (V1IsUndef)
return V2;
Gabor Greif
committed
if (ISD::isBuildVectorAllZeros(V1.getNode()))
return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
if (!isMMX)
return Op;
Evan Cheng
committed
}
// FIXME: fold these into legal mask.
if (!isMMX && (X86::isMOVSHDUPMask(SVOp) ||
X86::isMOVSLDUPMask(SVOp) ||
X86::isMOVHLPSMask(SVOp) ||
X86::isMOVHPMask(SVOp) ||
X86::isMOVLPMask(SVOp)))
if (ShouldXformToMOVHLPS(SVOp) ||
ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
return CommuteVectorShuffle(SVOp, DAG);
if (isShift) {
// No better options. Use a vshl / vsrl.
MVT EVT = VT.getVectorElementType();
ShAmt *= EVT.getSizeInBits();
return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
}
bool Commuted = false;
// FIXME: This should also accept a bitcast of a splat? Be careful, not
// 1,1,1,1 -> v8i16 though.
Gabor Greif
committed
V1IsSplat = isSplatVector(V1.getNode());
V2IsSplat = isSplatVector(V2.getNode());
// Canonicalize the splat or undef, if present, to be on the RHS.
if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
Op = CommuteVectorShuffle(SVOp, DAG);
SVOp = cast<ShuffleVectorSDNode>(Op);
V1 = SVOp->getOperand(0);
V2 = SVOp->getOperand(1);
std::swap(V1IsSplat, V2IsSplat);
std::swap(V1IsUndef, V2IsUndef);
Commuted = true;
if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
// Shuffling low element of v1 into undef, just return v1.
if (V2IsUndef)
return V1;
// If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
// the instruction selector will not match, so get a canonical MOVL with
// swapped operands to undo the commute.
return getMOVL(DAG, dl, VT, V2, V1);
Evan Cheng
committed
}
Evan Cheng
committed
if (X86::isUNPCKL_v_undef_Mask(SVOp) ||
X86::isUNPCKH_v_undef_Mask(SVOp) ||
X86::isUNPCKLMask(SVOp) ||
X86::isUNPCKHMask(SVOp))
Evan Cheng
committed
return Op;
if (V2IsSplat) {
// Normalize mask so all entries that point to V2 points to its first
// element then try to match unpck{h|l} again. If match, return a
// new vector_shuffle with the corrected mask.
SDValue NewMask = NormalizeMask(SVOp, DAG);
ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
if (NSVOp != SVOp) {
if (X86::isUNPCKLMask(NSVOp, true)) {
return NewMask;
} else if (X86::isUNPCKHMask(NSVOp, true)) {
return NewMask;
}
}
}
if (Commuted) {
// Commute is back and try unpck* again.
// FIXME: this seems wrong.
SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
if (X86::isUNPCKL_v_undef_Mask(NewSVOp) ||
X86::isUNPCKH_v_undef_Mask(NewSVOp) ||
X86::isUNPCKLMask(NewSVOp) ||
X86::isUNPCKHMask(NewSVOp))
return NewOp;
}
// FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
Evan Cheng
committed
// Normalize the node to match x86 shuffle ops if needed
if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
return CommuteVectorShuffle(SVOp, DAG);
// Check for legal shuffle and return?
SmallVector<int, 16> PermMask;
SVOp->getMask(PermMask);
if (isShuffleMaskLegal(PermMask, VT))
return Op;
// Handle v8i16 specifically since SSE can do byte extraction and insertion.
if (VT == MVT::v8i16) {
SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(SVOp, DAG, *this);
Gabor Greif
committed
if (NewOp.getNode())
return NewOp;
}
SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
if (NewOp.getNode())
return NewOp;
}
Evan Cheng
committed
// Handle all 4 wide cases with a number of shuffles except for MMX.
if (NumElems == 4 && !isMMX)
return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
SDValue
X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
MVT VT = Op.getValueType();
DebugLoc dl = Op.getDebugLoc();
if (VT.getSizeInBits() == 8) {
SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
Op.getOperand(0), Op.getOperand(1));
SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
} else if (VT.getSizeInBits() == 16) {
unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
// If Idx is 0, it's cheaper to do a move instead of a pextrw.
if (Idx == 0)
return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
DAG.getNode(ISD::BIT_CONVERT, dl,
MVT::v4i32,
Op.getOperand(0)),
Op.getOperand(1)));
SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
Op.getOperand(0), Op.getOperand(1));
SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
Evan Cheng
committed
} else if (VT == MVT::f32) {
// EXTRACTPS outputs to a GPR32 register which will require a movd to copy
// the result back to FR32 register. It's only worth matching if the
// result has a single use which is a store or a bitcast to i32. And in
// the case of a store, it's not worth it if the index is a constant 0,
// because a MOVSSmr can be used instead, which is smaller and faster.
Evan Cheng
committed
if (!Op.hasOneUse())
Gabor Greif
committed
SDNode *User = *Op.getNode()->use_begin();
if ((User->getOpcode() != ISD::STORE ||
(isa<ConstantSDNode>(Op.getOperand(1)) &&
cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
(User->getOpcode() != ISD::BIT_CONVERT ||
User->getValueType(0) != MVT::i32))
SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
Op.getOperand(0)),
Op.getOperand(1));
return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
} else if (VT == MVT::i32) {
// ExtractPS works with constant index.
if (isa<ConstantSDNode>(Op.getOperand(1)))
return Op;
SDValue
X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
if (!isa<ConstantSDNode>(Op.getOperand(1)))
Evan Cheng
committed
if (Subtarget->hasSSE41()) {
SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
Gabor Greif
committed
if (Res.getNode())
Evan Cheng
committed
return Res;
}
MVT VT = Op.getValueType();
DebugLoc dl = Op.getDebugLoc();
// TODO: handle v16i8.
if (VT.getSizeInBits() == 16) {
unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
if (Idx == 0)
return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
DAG.getNode(ISD::BIT_CONVERT, dl,
Op.getOperand(1)));
// Transform it so it match pextrw which produces a 32-bit result.
MVT EVT = (MVT::SimpleValueType)(VT.getSimpleVT()+1);
SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EVT,
Op.getOperand(0), Op.getOperand(1));
SDValue Assert = DAG.getNode(ISD::AssertZext, dl, EVT, Extract,
DAG.getValueType(VT));
return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
} else if (VT.getSizeInBits() == 32) {
unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
if (Idx == 0)
return Op;
// SHUFPS the element to the lowest double word, then movss.
int Mask[4] = { Idx, -1, -1, -1 };
MVT VVT = Op.getOperand(0).getValueType();
SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
DAG.getUNDEF(VVT), Mask);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
DAG.getIntPtrConstant(0));
} else if (VT.getSizeInBits() == 64) {
// FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
// FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
// to match extract_elt for f64.
unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
if (Idx == 0)
return Op;
// UNPCKHPD the element to the lowest double word, then movsd.
// Note if the lower 64 bits of the result of the UNPCKHPD is then stored
// to a f64mem, the whole operation is folded into a single MOVHPDmr.
int Mask[2] = { 1, -1 };
MVT VVT = Op.getOperand(0).getValueType();
SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
DAG.getUNDEF(VVT), Mask);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
DAG.getIntPtrConstant(0));
SDValue
X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
MVT VT = Op.getValueType();
MVT EVT = VT.getVectorElementType();
DebugLoc dl = Op.getDebugLoc();
SDValue N0 = Op.getOperand(0);
SDValue N1 = Op.getOperand(1);
SDValue N2 = Op.getOperand(2);
if ((EVT.getSizeInBits() == 8 || EVT.getSizeInBits() == 16) &&
isa<ConstantSDNode>(N2)) {
unsigned Opc = (EVT.getSizeInBits() == 8) ? X86ISD::PINSRB
// Transform it so it match pinsr{b,w} which expects a GR32 as its second
// argument.
if (N1.getValueType() != MVT::i32)
N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
if (N2.getValueType() != MVT::i32)
N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
return DAG.getNode(Opc, dl, VT, N0, N1, N2);
} else if (EVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
// Bits [7:6] of the constant are the source select. This will always be
// zero here. The DAG Combiner may combine an extract_elt index into these
// bits. For example (insert (extract, 3), 2) could be matched by putting
// the '3' into bits [7:6] of X86ISD::INSERTPS.
// Bits [5:4] of the constant are the destination select. This is the
// value of the incoming immediate.
// Bits [3:0] of the constant are the zero mask. The DAG Combiner may
// combine either bitwise AND or insert of float 0.0 to set these bits.
N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
// Create this as a scalar to vector..
N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
} else if (EVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
// PINSR* works with constant index.
return Op;
SDValue
X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
MVT VT = Op.getValueType();
MVT EVT = VT.getVectorElementType();
if (Subtarget->hasSSE41())
return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
if (EVT == MVT::i8)
DebugLoc dl = Op.getDebugLoc();
SDValue N0 = Op.getOperand(0);
SDValue N1 = Op.getOperand(1);
SDValue N2 = Op.getOperand(2);
if (EVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
// Transform it so it match pinsrw which expects a 16-bit value in a GR32
// as its second argument.
if (N1.getValueType() != MVT::i32)
N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
if (N2.getValueType() != MVT::i32)
N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
SDValue
X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
DebugLoc dl = Op.getDebugLoc();
if (Op.getValueType() == MVT::v2f32)
return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f32,
DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i32,
DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
MVT VT = MVT::v2i32;
switch (Op.getValueType().getSimpleVT()) {
default: break;
case MVT::v16i8:
case MVT::v8i16:
VT = MVT::v4i32;
break;
}
return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
Bill Wendling
committed
// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
// one of the above mentioned nodes. It has to be wrapped because otherwise
// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
// be used to form addressing mode. These wrapped nodes will be selected
// into MOV32ri.
SDValue
X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
// In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
// global base reg.
unsigned char OpFlag = 0;
unsigned WrapperKind = X86ISD::Wrapper;
Chris Lattner
committed
if (Subtarget->isPICStyleRIPRel() &&
Chris Lattner
committed
getTargetMachine().getCodeModel() == CodeModel::Small)
Chris Lattner
committed
WrapperKind = X86ISD::WrapperRIP;
Chris Lattner
committed
else if (Subtarget->isPICStyleGOT())
OpFlag = X86II::MO_GOTOFF;
else if (Subtarget->isPICStyleStubPIC())
OpFlag = X86II::MO_PIC_BASE_OFFSET;
Evan Cheng
committed
SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
CP->getAlignment(),
CP->getOffset(), OpFlag);
DebugLoc DL = CP->getDebugLoc();
Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
// With PIC, the address is actually $g + Offset.
if (OpFlag) {
Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
DAG.getNode(X86ISD::GlobalBaseReg,
DebugLoc::getUnknownLoc(), getPointerTy()),
}
return Result;
}
SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
// In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
// global base reg.
unsigned char OpFlag = 0;
unsigned WrapperKind = X86ISD::Wrapper;
Chris Lattner
committed
if (Subtarget->isPICStyleRIPRel() &&
Chris Lattner
committed
getTargetMachine().getCodeModel() == CodeModel::Small)
Chris Lattner
committed
WrapperKind = X86ISD::WrapperRIP;
Chris Lattner
committed
else if (Subtarget->isPICStyleGOT())
OpFlag = X86II::MO_GOTOFF;
else if (Subtarget->isPICStyleStubPIC())
OpFlag = X86II::MO_PIC_BASE_OFFSET;
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
OpFlag);
DebugLoc DL = JT->getDebugLoc();
Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
// With PIC, the address is actually $g + Offset.
if (OpFlag) {
Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
DAG.getNode(X86ISD::GlobalBaseReg,
DebugLoc::getUnknownLoc(), getPointerTy()),
Result);
}
return Result;
}
SDValue
X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) {
const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
// In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
// global base reg.
unsigned char OpFlag = 0;
unsigned WrapperKind = X86ISD::Wrapper;
if (Subtarget->isPICStyleRIPRel() &&
Chris Lattner
committed
getTargetMachine().getCodeModel() == CodeModel::Small)
Chris Lattner
committed
WrapperKind = X86ISD::WrapperRIP;
Chris Lattner
committed
else if (Subtarget->isPICStyleGOT())
OpFlag = X86II::MO_GOTOFF;
else if (Subtarget->isPICStyleStubPIC())
OpFlag = X86II::MO_PIC_BASE_OFFSET;
SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
DebugLoc DL = Op.getDebugLoc();
Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
// With PIC, the address is actually $g + Offset.
if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
Chris Lattner
committed
!Subtarget->is64Bit()) {
Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
DAG.getNode(X86ISD::GlobalBaseReg,
DebugLoc::getUnknownLoc(),
getPointerTy()),
Result);
}
return Result;
}
X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
int64_t Offset,
Evan Cheng
committed
SelectionDAG &DAG) const {
// Create the TargetGlobalAddress node, folding in the constant
// offset if it is legal.
unsigned char OpFlags =
Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
SDValue Result;
if (OpFlags == X86II::MO_NO_FLAG && isInt32(Offset)) {
// A direct static reference to a global.
Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
Offset = 0;
} else {
Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0, OpFlags);
}
if (Subtarget->isPICStyleRIPRel() &&
getTargetMachine().getCodeModel() == CodeModel::Small)
Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
else
Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
// With PIC, the address is actually $g + Offset.
if (isGlobalRelativeToPICBase(OpFlags)) {
Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
// For globals that require a load from a stub to get the address, emit the
// load.
if (isGlobalStubReference(OpFlags))
Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
PseudoSourceValue::getGOT(), 0);
// If there was a non-zero offset that we didn't fold, create an explicit
// addition for it.
if (Offset != 0)
Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
DAG.getConstant(Offset, getPointerTy()));
return Result;
}
Evan Cheng
committed
SDValue
X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
Evan Cheng
committed
}
static SDValue
GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
Chris Lattner
committed
SDValue *InFlag, const MVT PtrVT, unsigned ReturnReg,
unsigned char OperandFlags) {
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
DebugLoc dl = GA->getDebugLoc();
SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
GA->getValueType(0),
Chris Lattner
committed
GA->getOffset(),
OperandFlags);
if (InFlag) {
SDValue Ops[] = { Chain, TGA, *InFlag };
Rafael Espindola
committed
Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
} else {
SDValue Ops[] = { Chain, TGA };
Rafael Espindola
committed
Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
Rafael Espindola
committed
SDValue Flag = Chain.getValue(1);
return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
Anton Korobeynikov
committed
// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
Anton Korobeynikov
committed
LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
DebugLoc dl = GA->getDebugLoc(); // ? function entry point might be better
SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
Lauro Ramos Venancio
committed
DAG.getNode(X86ISD::GlobalBaseReg,
DebugLoc::getUnknownLoc(),
Lauro Ramos Venancio
committed
PtrVT), InFlag);
InFlag = Chain.getValue(1);
Chris Lattner
committed
return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
Lauro Ramos Venancio
committed
}
Anton Korobeynikov
committed
// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
Anton Korobeynikov
committed
LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
Chris Lattner
committed
return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
X86::RAX, X86II::MO_TLSGD);
Anton Korobeynikov
committed
}
Lauro Ramos Venancio
committed
// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
// "local exec" model.
static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
const MVT PtrVT, TLSModel::Model model,
bool is64Bit) {
DebugLoc dl = GA->getDebugLoc();
Lauro Ramos Venancio
committed
// Get the Thread Pointer
SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress,
DebugLoc::getUnknownLoc(), PtrVT,
DAG.getRegister(is64Bit? X86::FS : X86::GS,
MVT::i32));
SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base,
NULL, 0);
Chris Lattner
committed
unsigned char OperandFlags = 0;
// Most TLS accesses are not RIP relative, even on x86-64. One exception is
// initialexec.
unsigned WrapperKind = X86ISD::Wrapper;
if (model == TLSModel::LocalExec) {
Chris Lattner
committed
OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
} else if (is64Bit) {
assert(model == TLSModel::InitialExec);
OperandFlags = X86II::MO_GOTTPOFF;
WrapperKind = X86ISD::WrapperRIP;
} else {
assert(model == TLSModel::InitialExec);
OperandFlags = X86II::MO_INDNTPOFF;
Chris Lattner
committed
}
Lauro Ramos Venancio
committed
// emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
// exec)
SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
Chris Lattner
committed
GA->getOffset(), OperandFlags);
SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
Lauro Ramos Venancio
committed
Rafael Espindola
committed
if (model == TLSModel::InitialExec)
Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
PseudoSourceValue::getGOT(), 0);
Lauro Ramos Venancio
committed
Lauro Ramos Venancio
committed
// The address of the thread local variable is the add of the thread
// pointer with the offset of the variable.
return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
Lauro Ramos Venancio
committed
}
SDValue
X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
Lauro Ramos Venancio
committed
// TODO: implement the "local dynamic" model
// TODO: implement the "initial exec"model for pic executables
Anton Korobeynikov
committed
assert(Subtarget->isTargetELF() &&
"TLS not implemented for non-ELF targets");
Lauro Ramos Venancio
committed
GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
Chris Lattner
committed
const GlobalValue *GV = GA->getGlobal();
// If GV is an alias then use the aliasee for determining
// thread-localness.
if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
GV = GA->resolveAliasedGlobal(false);
TLSModel::Model model = getTLSModel(GV,
getTargetMachine().getRelocationModel());
switch (model) {
case TLSModel::GeneralDynamic:
case TLSModel::LocalDynamic: // not implemented
if (Subtarget->is64Bit())
Rafael Espindola
committed
return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
Chris Lattner
committed
return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
case TLSModel::InitialExec:
case TLSModel::LocalExec:
return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
Subtarget->is64Bit());
Anton Korobeynikov
committed
}
Chris Lattner
committed
llvm_unreachable("Unreachable");
Lauro Ramos Venancio
committed
}
/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
/// take a 2 x i32 value to shift plus a shift amount.
SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
assert(Op.getNumOperands() == 3 && "Not a double-shift!");
MVT VT = Op.getValueType();
unsigned VTBits = VT.getSizeInBits();
DebugLoc dl = Op.getDebugLoc();
bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
SDValue ShOpLo = Op.getOperand(0);
SDValue ShOpHi = Op.getOperand(1);
SDValue ShAmt = Op.getOperand(2);
SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
DAG.getConstant(VTBits - 1, MVT::i8))
: DAG.getConstant(0, VT);
if (Op.getOpcode() == ISD::SHL_PARTS) {
Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
SDValue Cond = DAG.getNode(X86ISD::CMP, dl, VT,
SDValue Hi, Lo;
SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
if (Op.getOpcode() == ISD::SHL_PARTS) {
Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
return DAG.getMergeValues(Ops, 2, dl);
SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
MVT SrcVT = Op.getOperand(0).getValueType();
if (SrcVT.isVector()) {
if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) {
return Op;
}
return SDValue();
}
assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
"Unknown SINT_TO_FP to lower!");
// These are really Legal; return the operand so the caller accepts it as
// Legal.
if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
return Op;
if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
Subtarget->is64Bit()) {
return Op;
}
DebugLoc dl = Op.getDebugLoc();
unsigned Size = SrcVT.getSizeInBits()/8;
MachineFunction &MF = DAG.getMachineFunction();
int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
StackSlot,
PseudoSourceValue::getFixedStack(SSFI), 0);
return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
}
SDValue X86TargetLowering::BuildFILD(SDValue Op, MVT SrcVT, SDValue Chain,
SDValue StackSlot,
SelectionDAG &DAG) {
// Build the FILD
DebugLoc dl = Op.getDebugLoc();
SDVTList Tys;
bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
else
Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
Ops.push_back(Chain);
Ops.push_back(StackSlot);
Ops.push_back(DAG.getValueType(SrcVT));
SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
Tys, &Ops[0], Ops.size());
Chain = Result.getValue(1);
// FIXME: Currently the FST is flagged to the FILD_FLAG. This
// shouldn't be necessary except that RFP cannot be live across
// multiple blocks. When stackifier is fixed, they can be uncoupled.
MachineFunction &MF = DAG.getMachineFunction();
int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
Tys = DAG.getVTList(MVT::Other);
Ops.push_back(Result);
Ops.push_back(StackSlot);
Ops.push_back(DAG.getValueType(Op.getValueType()));
Ops.push_back(InFlag);
Chain = DAG.getNode(X86ISD::FST, dl, Tys, &Ops[0], Ops.size());
Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
PseudoSourceValue::getFixedStack(SSFI), 0);
}
return Result;
}
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) {
// This algorithm is not obvious. Here it is in C code, more or less:
/*
double uint64_to_double( uint32_t hi, uint32_t lo ) {
static const __m128i exp = { 0x4330000045300000ULL, 0 };
static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
// Copy ints to xmm registers.
__m128i xh = _mm_cvtsi32_si128( hi );
__m128i xl = _mm_cvtsi32_si128( lo );
// Combine into low half of a single xmm register.
__m128i x = _mm_unpacklo_epi32( xh, xl );
__m128d d;
double sd;
// Merge in appropriate exponents to give the integer bits the right
// magnitude.
x = _mm_unpacklo_epi32( x, exp );
// Subtract away the biases to deal with the IEEE-754 double precision
// implicit 1.
d = _mm_sub_pd( (__m128d) x, bias );
// All conversions up to here are exact. The correctly rounded result is
// calculated using the current rounding mode using the following
// horizontal add.
d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
_mm_store_sd( &sd, d ); // Because we are returning doubles in XMM, this
// store doesn't really need to be here (except
// maybe to zero the other double)
return sd;
}
*/
DebugLoc dl = Op.getDebugLoc();
LLVMContext *Context = DAG.getContext();
// Build some magic constants.
std::vector<Constant*> CV0;
Owen Anderson
committed
CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
Constant *C0 = ConstantVector::get(CV0);
Evan Cheng
committed
SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
std::vector<Constant*> CV1;
CV1.push_back(
ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
CV1.push_back(
ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
Constant *C1 = ConstantVector::get(CV1);
Evan Cheng
committed
SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
Op.getOperand(0),
DAG.getIntPtrConstant(1)));
SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
Op.getOperand(0),
DAG.getIntPtrConstant(0)));
SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
PseudoSourceValue::getConstantPool(), 0,
false, 16);
SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
PseudoSourceValue::getConstantPool(), 0,
false, 16);
SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
// Add the halves; easiest way is to swap them into another reg first.
int ShufMask[2] = { 1, -1 };
SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
DAG.getUNDEF(MVT::v2f64), ShufMask);
SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
DAG.getIntPtrConstant(0));
}
// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) {
DebugLoc dl = Op.getDebugLoc();
// FP constant to bias correct the final result.
SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
MVT::f64);
// Load the 32-bit value into an XMM register.
SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
Op.getOperand(0),
DAG.getIntPtrConstant(0)));
Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
DAG.getIntPtrConstant(0));
// Or the load with the bias.
SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
Evan Cheng
committed
MVT::v2f64, Load)),
DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
Evan Cheng
committed
MVT::v2f64, Bias)));
Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
DAG.getIntPtrConstant(0));
// Subtract the bias.
SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
// Handle final rounding.
MVT DestVT = Op.getValueType();
if (DestVT.bitsLT(MVT::f64)) {
return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
DAG.getIntPtrConstant(0));
} else if (DestVT.bitsGT(MVT::f64)) {
return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
}
SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
SDValue N0 = Op.getOperand(0);
DebugLoc dl = Op.getDebugLoc();
// Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't