Skip to content
GVN.cpp 87.7 KiB
Newer Older
    // Insert the new load after the old load.  This ensures that subsequent
    // memdep queries will find the new load.  We can't easily remove the old
    // load completely because it is already in the value numbering table.
    IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
      IntegerType::get(LoadTy->getContext(), NewLoadSize*8);
    DestPTy = PointerType::get(DestPTy, 
                       cast<PointerType>(PtrVal->getType())->getAddressSpace());
    Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
    PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
    LoadInst *NewLoad = Builder.CreateLoad(PtrVal);
    NewLoad->takeName(SrcVal);
    NewLoad->setAlignment(SrcVal->getAlignment());
    DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
    DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
    
    // Replace uses of the original load with the wider load.  On a big endian
    // system, we need to shift down to get the relevant bits.
    Value *RV = NewLoad;
    if (TD.isBigEndian())
      RV = Builder.CreateLShr(RV,
                    NewLoadSize*8-SrcVal->getType()->getPrimitiveSizeInBits());
    RV = Builder.CreateTrunc(RV, SrcVal->getType());
    SrcVal->replaceAllUsesWith(RV);
Chris Lattner's avatar
Chris Lattner committed
    
    // We would like to use gvn.markInstructionForDeletion here, but we can't
    // because the load is already memoized into the leader map table that GVN
    // tracks.  It is potentially possible to remove the load from the table,
    // but then there all of the operations based on it would need to be
    // rehashed.  Just leave the dead load around.
Chris Lattner's avatar
Chris Lattner committed
    gvn.getMemDep().removeInstruction(SrcVal);
    SrcVal = NewLoad;
  }
  
  return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, TD);
}


/// GetMemInstValueForLoad - This function is called when we have a
/// memdep query of a load that ends up being a clobbering mem intrinsic.
static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
                                     Type *LoadTy, Instruction *InsertPt,
                                     const TargetData &TD){
  LLVMContext &Ctx = LoadTy->getContext();
  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;

  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
  
  // We know that this method is only called when the mem transfer fully
  // provides the bits for the load.
  if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
    // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
    // independently of what the offset is.
    Value *Val = MSI->getValue();
    if (LoadSize != 1)
      Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
    
    Value *OneElt = Val;
    
    // Splat the value out to the right number of bits.
    for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
      // If we can double the number of bytes set, do it.
      if (NumBytesSet*2 <= LoadSize) {
        Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
        Val = Builder.CreateOr(Val, ShVal);
        NumBytesSet <<= 1;
        continue;
      }
      
      // Otherwise insert one byte at a time.
      Value *ShVal = Builder.CreateShl(Val, 1*8);
      Val = Builder.CreateOr(OneElt, ShVal);
      ++NumBytesSet;
    }
    
    return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
  }
 
  // Otherwise, this is a memcpy/memmove from a constant global.
  MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
  Constant *Src = cast<Constant>(MTI->getSource());

  // Otherwise, see if we can constant fold a load from the constant with the
  // offset applied as appropriate.
  Src = ConstantExpr::getBitCast(Src,
                                 llvm::Type::getInt8PtrTy(Src->getContext()));
  Constant *OffsetCst = 
  ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
  Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
  Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
  return ConstantFoldLoadFromConstPtr(Src, &TD);
namespace {
struct AvailableValueInBlock {
  /// BB - The basic block in question.
  BasicBlock *BB;
  enum ValType {
    SimpleVal,  // A simple offsetted value that is accessed.
    LoadVal,    // A value produced by a load.
    MemIntrin   // A memory intrinsic which is loaded from.
  };
  
  /// V - The value that is live out of the block.
  PointerIntPair<Value *, 2, ValType> Val;
  
  /// Offset - The byte offset in Val that is interesting for the load query.
  static AvailableValueInBlock get(BasicBlock *BB, Value *V,
                                   unsigned Offset = 0) {
    AvailableValueInBlock Res;
    Res.BB = BB;
    Res.Val.setPointer(V);
    Res.Val.setInt(SimpleVal);

  static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
                                     unsigned Offset = 0) {
    AvailableValueInBlock Res;
    Res.BB = BB;
    Res.Val.setPointer(MI);
    Res.Val.setInt(MemIntrin);
    Res.Offset = Offset;
    return Res;
  }
  
  static AvailableValueInBlock getLoad(BasicBlock *BB, LoadInst *LI,
                                       unsigned Offset = 0) {
    AvailableValueInBlock Res;
    Res.BB = BB;
    Res.Val.setPointer(LI);
    Res.Val.setInt(LoadVal);
    Res.Offset = Offset;
    return Res;
  }

  bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
  bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
  bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }

  Value *getSimpleValue() const {
    assert(isSimpleValue() && "Wrong accessor");
    return Val.getPointer();
  }
  
  LoadInst *getCoercedLoadValue() const {
    assert(isCoercedLoadValue() && "Wrong accessor");
    return cast<LoadInst>(Val.getPointer());
  }
  
  MemIntrinsic *getMemIntrinValue() const {
    assert(isMemIntrinValue() && "Wrong accessor");
    return cast<MemIntrinsic>(Val.getPointer());
  }
  
  /// MaterializeAdjustedValue - Emit code into this block to adjust the value
  /// defined here to the specified type.  This handles various coercion cases.
  Value *MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const {
    Value *Res;
    if (isSimpleValue()) {
      Res = getSimpleValue();
      if (Res->getType() != LoadTy) {
        const TargetData *TD = gvn.getTargetData();
        assert(TD && "Need target data to handle type mismatch case");
        Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
                                   *TD);
        
        DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
                     << *getSimpleValue() << '\n'
                     << *Res << '\n' << "\n\n\n");
      }
    } else if (isCoercedLoadValue()) {
      LoadInst *Load = getCoercedLoadValue();
      if (Load->getType() == LoadTy && Offset == 0) {
        Res = Load;
      } else {
        Res = GetLoadValueForLoad(Load, Offset, LoadTy, BB->getTerminator(),
        
        DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << "  "
                     << *getCoercedLoadValue() << '\n'
                     << *Res << '\n' << "\n\n\n");
      }
      const TargetData *TD = gvn.getTargetData();
      assert(TD && "Need target data to handle type mismatch case");
      Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
                                   LoadTy, BB->getTerminator(), *TD);
      DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
                   << "  " << *getMemIntrinValue() << '\n'
                   << *Res << '\n' << "\n\n\n");
    }
    return Res;
  }
/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
/// construct SSA form, allowing us to eliminate LI.  This returns the value
/// that should be used at LI's definition site.
static Value *ConstructSSAForLoadSet(LoadInst *LI, 
                         SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
  // Check for the fully redundant, dominating load case.  In this case, we can
  // just use the dominating value directly.
  if (ValuesPerBlock.size() == 1 && 
      gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
                                               LI->getParent()))
    return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), gvn);

  // Otherwise, we have to construct SSA form.
  SmallVector<PHINode*, 8> NewPHIs;
  SSAUpdater SSAUpdate(&NewPHIs);
  SSAUpdate.Initialize(LI->getType(), LI->getName());
  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
    const AvailableValueInBlock &AV = ValuesPerBlock[i];
    BasicBlock *BB = AV.BB;
    if (SSAUpdate.HasValueForBlock(BB))
      continue;
    SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, gvn));
  
  // Perform PHI construction.
  Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
  
  // If new PHI nodes were created, notify alias analysis.
  if (V->getType()->isPointerTy()) {
    AliasAnalysis *AA = gvn.getAliasAnalysis();
    
    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
      AA->copyValue(LI, NewPHIs[i]);
    
    // Now that we've copied information to the new PHIs, scan through
    // them again and inform alias analysis that we've added potentially
    // escaping uses to any values that are operands to these PHIs.
    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) {
      PHINode *P = NewPHIs[i];
      for (unsigned ii = 0, ee = P->getNumIncomingValues(); ii != ee; ++ii) {
        unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
        AA->addEscapingUse(P->getOperandUse(jj));
      }
Gabor Greif's avatar
Gabor Greif committed
static bool isLifetimeStart(const Instruction *Inst) {
  if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
    return II->getIntrinsicID() == Intrinsic::lifetime_start;
Chris Lattner's avatar
Chris Lattner committed
  return false;
}

/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
/// non-local by performing PHI construction.
bool GVN::processNonLocalLoad(LoadInst *LI) {
  // Find the non-local dependencies of the load.
  AliasAnalysis::Location Loc = VN.getAliasAnalysis()->getLocation(LI);
  MD->getNonLocalPointerDependency(Loc, true, LI->getParent(), Deps);
David Greene's avatar
David Greene committed
  //DEBUG(dbgs() << "INVESTIGATING NONLOCAL LOAD: "
  //             << Deps.size() << *LI << '\n');
  // If we had to process more than one hundred blocks to find the
  // dependencies, this load isn't worth worrying about.  Optimizing
  // it will be too expensive.
  unsigned NumDeps = Deps.size();
  if (NumDeps > 100)

  // If we had a phi translation failure, we'll have a single entry which is a
  // clobber in the current block.  Reject this early.
  if (NumDeps == 1 &&
      !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
David Greene's avatar
David Greene committed
      dbgs() << "GVN: non-local load ";
      WriteAsOperand(dbgs(), LI);
      dbgs() << " has unknown dependencies\n";
  // Filter out useless results (non-locals, etc).  Keep track of the blocks
  // where we have a value available in repl, also keep track of whether we see
  // dependencies that produce an unknown value for the load (such as a call
  // that could potentially clobber the load).
  SmallVector<AvailableValueInBlock, 64> ValuesPerBlock;
  SmallVector<BasicBlock*, 64> UnavailableBlocks;
  for (unsigned i = 0, e = NumDeps; i != e; ++i) {
    BasicBlock *DepBB = Deps[i].getBB();
    MemDepResult DepInfo = Deps[i].getResult();
    if (!DepInfo.isDef() && !DepInfo.isClobber()) {
    if (DepInfo.isClobber()) {
      // The address being loaded in this non-local block may not be the same as
      // the pointer operand of the load if PHI translation occurs.  Make sure
      // to consider the right address.
      Value *Address = Deps[i].getAddress();
      
      // If the dependence is to a store that writes to a superset of the bits
      // read by the load, we can extract the bits we need for the load from the
      // stored value.
      if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
        if (TD && Address) {
          int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
          if (Offset != -1) {
            ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
      
      // Check to see if we have something like this:
      //    load i32* P
      //    load i8* (P+1)
      // if we have this, replace the later with an extraction from the former.
      if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
        // If this is a clobber and L is the first instruction in its block, then
        // we have the first instruction in the entry block.
        if (DepLI != LI && Address && TD) {
          int Offset = AnalyzeLoadFromClobberingLoad(LI->getType(),
                                                     LI->getPointerOperand(),
                                                     DepLI, *TD);
          
          if (Offset != -1) {
            ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB,DepLI,
                                                                    Offset));

      // If the clobbering value is a memset/memcpy/memmove, see if we can
      // forward a value on from it.
      if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
        if (TD && Address) {
          int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
          if (Offset != -1) {
            ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
                                                                  Offset));
            continue;
          }            
      UnavailableBlocks.push_back(DepBB);
      continue;
    }
    Instruction *DepInst = DepInfo.getInst();
    // Loading the allocation -> undef.
Chris Lattner's avatar
Chris Lattner committed
    if (isa<AllocaInst>(DepInst) || isMalloc(DepInst) ||
        // Loading immediately after lifetime begin -> undef.
        isLifetimeStart(DepInst)) {
      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
                                             UndefValue::get(LI->getType())));
    if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
      // Reject loads and stores that are to the same address but are of
      // different types if we have to.
      if (S->getValueOperand()->getType() != LI->getType()) {
        // If the stored value is larger or equal to the loaded value, we can
        // reuse it.
        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
          UnavailableBlocks.push_back(DepBB);
          continue;
        }
      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
      continue;
    }
    
    if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
      // If the types mismatch and we can't handle it, reject reuse of the load.
      if (LD->getType() != LI->getType()) {
        // If the stored value is larger or equal to the loaded value, we can
        // reuse it.
        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
          UnavailableBlocks.push_back(DepBB);
          continue;
        }          
      ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB, LD));
    
    UnavailableBlocks.push_back(DepBB);
    continue;
  // If we have no predecessors that produce a known value for this load, exit
  // early.
  if (ValuesPerBlock.empty()) return false;
  // If all of the instructions we depend on produce a known value for this
  // load, then it is fully redundant and we can use PHI insertion to compute
  // its value.  Insert PHIs and remove the fully redundant value now.
  if (UnavailableBlocks.empty()) {
David Greene's avatar
David Greene committed
    DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
    Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
    if (isa<PHINode>(V))
      V->takeName(LI);
      MD->invalidateCachedPointerInfo(V);
  if (!EnablePRE || !EnableLoadPRE)
    return false;
  // Okay, we have *some* definitions of the value.  This means that the value
  // is available in some of our (transitive) predecessors.  Lets think about
  // doing PRE of this load.  This will involve inserting a new load into the
  // predecessor when it's not available.  We could do this in general, but
  // prefer to not increase code size.  As such, we only do this when we know
  // that we only have to insert *one* load (which means we're basically moving
  // the load, not inserting a new one).
  SmallPtrSet<BasicBlock *, 4> Blockers;
  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
    Blockers.insert(UnavailableBlocks[i]);

  // Let's find the first basic block with more than one predecessor.  Walk
  // backwards through predecessors if needed.
  BasicBlock *LoadBB = LI->getParent();
  BasicBlock *TmpBB = LoadBB;

  bool isSinglePred = false;
  bool allSingleSucc = true;
  while (TmpBB->getSinglePredecessor()) {
    isSinglePred = true;
    TmpBB = TmpBB->getSinglePredecessor();
    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
      return false;
    if (Blockers.count(TmpBB))
      return false;
    
    // If any of these blocks has more than one successor (i.e. if the edge we
    // just traversed was critical), then there are other paths through this 
    // block along which the load may not be anticipated.  Hoisting the load 
    // above this block would be adding the load to execution paths along
    // which it was not previously executed.
    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
  // FIXME: It is extremely unclear what this loop is doing, other than
  // artificially restricting loadpre.
    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
      const AvailableValueInBlock &AV = ValuesPerBlock[i];
      if (AV.isSimpleValue())
        // "Hot" Instruction is in some loop (because it dominates its dep.
        // instruction).
        if (Instruction *I = dyn_cast<Instruction>(AV.getSimpleValue()))
          if (DT->dominates(LI, I)) {
            isHot = true;
            break;
          }
    }

    // We are interested only in "hot" instructions. We don't want to do any
    // mis-optimizations here.
    if (!isHot)
      return false;
  }

  // Check to see how many predecessors have the loaded value fully
  // available.
  DenseMap<BasicBlock*, Value*> PredLoads;
  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
    FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> NeedToSplit;
  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
       PI != E; ++PI) {
    BasicBlock *Pred = *PI;
    if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) {
    if (Pred->getTerminator()->getNumSuccessors() != 1) {
      if (isa<IndirectBrInst>(Pred->getTerminator())) {
        DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
              << Pred->getName() << "': " << *LI << '\n');
        return false;
      }

      if (LoadBB->isLandingPad()) {
        DEBUG(dbgs()
              << "COULD NOT PRE LOAD BECAUSE OF LANDING PAD CRITICAL EDGE '"
              << Pred->getName() << "': " << *LI << '\n');
        return false;
      }

      unsigned SuccNum = GetSuccessorNumber(Pred, LoadBB);
      NeedToSplit.push_back(std::make_pair(Pred->getTerminator(), SuccNum));
    toSplit.append(NeedToSplit.begin(), NeedToSplit.end());
  // Decide whether PRE is profitable for this load.
  unsigned NumUnavailablePreds = PredLoads.size();
  assert(NumUnavailablePreds != 0 &&
         "Fully available value should be eliminated above!");
  
  // If this load is unavailable in multiple predecessors, reject it.
  // FIXME: If we could restructure the CFG, we could make a common pred with
  // all the preds that don't have an available LI and insert a new load into
  // that one block.
  if (NumUnavailablePreds != 1)
      return false;

  // Check if the load can safely be moved to all the unavailable predecessors.
  bool CanDoPRE = true;
  SmallVector<Instruction*, 8> NewInsts;
  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
         E = PredLoads.end(); I != E; ++I) {
    BasicBlock *UnavailablePred = I->first;

    // Do PHI translation to get its value in the predecessor if necessary.  The
    // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.

    // If all preds have a single successor, then we know it is safe to insert
    // the load on the pred (?!?), so we can insert code to materialize the
    // pointer if it is not available.
    PHITransAddr Address(LI->getPointerOperand(), TD);
    Value *LoadPtr = 0;
    if (allSingleSucc) {
      LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
                                                  *DT, NewInsts);
    } else {
      Address.PHITranslateValue(LoadBB, UnavailablePred, DT);
    // If we couldn't find or insert a computation of this phi translated value,
    // we fail PRE.
    if (LoadPtr == 0) {
      DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
            << *LI->getPointerOperand() << "\n");
    // Make sure it is valid to move this load here.  We have to watch out for:
    //  @1 = getelementptr (i8* p, ...
    //  test p and branch if == 0
    //  load @1
    // It is valid to have the getelementptr before the test, even if p can
    // be 0, as getelementptr only does address arithmetic.
    // If we are not pushing the value through any multiple-successor blocks
    // we do not have this case.  Otherwise, check that the load is safe to
    // put anywhere; this can be improved, but should be conservatively safe.
    if (!allSingleSucc &&
        // FIXME: REEVALUTE THIS.
        !isSafeToLoadUnconditionally(LoadPtr,
                                     UnavailablePred->getTerminator(),
                                     LI->getAlignment(), TD)) {
      CanDoPRE = false;
      break;
    }

    I->second = LoadPtr;
    while (!NewInsts.empty()) {
      Instruction *I = NewInsts.pop_back_val();
      if (MD) MD->removeInstruction(I);
      I->eraseFromParent();
    }
  // Okay, we can eliminate this load by inserting a reload in the predecessor
  // and using PHI construction to get the value in the other predecessors, do
  // it.
David Greene's avatar
David Greene committed
  DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
David Greene's avatar
David Greene committed
          dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
  // Assign value numbers to the new instructions.
  for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
    // FIXME: We really _ought_ to insert these value numbers into their 
    // parent's availability map.  However, in doing so, we risk getting into
    // ordering issues.  If a block hasn't been processed yet, we would be
    // marking a value as AVAIL-IN, which isn't what we intend.
    VN.lookup_or_add(NewInsts[i]);
  }

  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
         E = PredLoads.end(); I != E; ++I) {
    BasicBlock *UnavailablePred = I->first;
    Value *LoadPtr = I->second;
    Instruction *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
                                        LI->getAlignment(),
                                        UnavailablePred->getTerminator());

    // Transfer the old load's TBAA tag to the new load.
    if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa))
      NewLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
    // Transfer DebugLoc.
    NewLoad->setDebugLoc(LI->getDebugLoc());

    // Add the newly created load.
    ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
                                                        NewLoad));
    MD->invalidateCachedPointerInfo(LoadPtr);
    DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
  LI->replaceAllUsesWith(V);
  if (isa<PHINode>(V))
    V->takeName(LI);
    MD->invalidateCachedPointerInfo(V);
/// processLoad - Attempt to eliminate a load, first by eliminating it
/// locally, and then attempting non-local elimination if that fails.
bool GVN::processLoad(LoadInst *L) {
  if (L->use_empty()) {
    markInstructionForDeletion(L);
    return true;
  }
  
  // ... to a pointer that has been loaded from before...
  MemDepResult Dep = MD->getDependency(L);
  // If we have a clobber and target data is around, see if this is a clobber
  // that we can fix up through code synthesis.
  if (Dep.isClobber() && TD) {
    // Check to see if we have something like this:
    //   store i32 123, i32* %P
    //   %A = bitcast i32* %P to i8*
    //   %B = gep i8* %A, i32 1
    //   %C = load i8* %B
    //
    // We could do that by recognizing if the clobber instructions are obviously
    // a common base + constant offset, and if the previous store (or memset)
    // completely covers this load.  This sort of thing can happen in bitfield
    // access code.
    if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst())) {
      int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
                                                  L->getPointerOperand(),
                                                  DepSI, *TD);
      if (Offset != -1)
        AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset,
                                        L->getType(), L, *TD);
    }
    
    // Check to see if we have something like this:
    //    load i32* P
    //    load i8* (P+1)
    // if we have this, replace the later with an extraction from the former.
    if (LoadInst *DepLI = dyn_cast<LoadInst>(Dep.getInst())) {
      // If this is a clobber and L is the first instruction in its block, then
      // we have the first instruction in the entry block.
      if (DepLI == L)
        return false;
      
      int Offset = AnalyzeLoadFromClobberingLoad(L->getType(),
                                                 L->getPointerOperand(),
                                                 DepLI, *TD);
      if (Offset != -1)
        AvailVal = GetLoadValueForLoad(DepLI, Offset, L->getType(), L, *this);
    // If the clobbering value is a memset/memcpy/memmove, see if we can forward
    // a value on from it.
    if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
      int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
                                                    L->getPointerOperand(),
                                                    DepMI, *TD);
      if (Offset != -1)
        AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, *TD);
David Greene's avatar
David Greene committed
      DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
            << *AvailVal << '\n' << *L << "\n\n\n");
      
      // Replace the load!
      L->replaceAllUsesWith(AvailVal);
        MD->invalidateCachedPointerInfo(AvailVal);
  }
  
  // If the value isn't available, don't do anything!
  if (Dep.isClobber()) {
      // fast print dep, using operator<< on instruction is too slow.
David Greene's avatar
David Greene committed
      dbgs() << "GVN: load ";
      WriteAsOperand(dbgs(), L);
      Instruction *I = Dep.getInst();
David Greene's avatar
David Greene committed
      dbgs() << " is clobbered by " << *I << '\n';
  // If it is defined in another block, try harder.
  if (Dep.isNonLocal())
    return processNonLocalLoad(L);

  if (!Dep.isDef()) {
    DEBUG(
      // fast print dep, using operator<< on instruction is too slow.
      dbgs() << "GVN: load ";
      WriteAsOperand(dbgs(), L);
      dbgs() << " has unknown dependence\n";
    );
    return false;
  }

  Instruction *DepInst = Dep.getInst();
  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
    Value *StoredVal = DepSI->getValueOperand();
    
    // The store and load are to a must-aliased pointer, but they may not
    // actually have the same type.  See if we know how to reuse the stored
    // value (depending on its type).
    if (StoredVal->getType() != L->getType()) {
        StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
                                                   L, *TD);
        if (StoredVal == 0)
          return false;
        
David Greene's avatar
David Greene committed
        DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
                     << '\n' << *L << "\n\n\n");
      }
      else 
    L->replaceAllUsesWith(StoredVal);
    if (StoredVal->getType()->isPointerTy())
      MD->invalidateCachedPointerInfo(StoredVal);
    return true;
  }

  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
    Value *AvailableVal = DepLI;
    
    // The loads are of a must-aliased pointer, but they may not actually have
    // the same type.  See if we know how to reuse the previously loaded value
    // (depending on its type).
    if (DepLI->getType() != L->getType()) {
        AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(),
                                                      L, *TD);
        if (AvailableVal == 0)
          return false;
David Greene's avatar
David Greene committed
        DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
                     << "\n" << *L << "\n\n\n");
      }
      else 
        return false;
    L->replaceAllUsesWith(AvailableVal);
      MD->invalidateCachedPointerInfo(DepLI);
  // If this load really doesn't depend on anything, then we must be loading an
  // undef value.  This can happen when loading for a fresh allocation with no
  // intervening stores, for example.
  if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) {
    L->replaceAllUsesWith(UndefValue::get(L->getType()));
  // If this load occurs either right after a lifetime begin,
  // then the loaded value is undefined.
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(DepInst)) {
    if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
      L->replaceAllUsesWith(UndefValue::get(L->getType()));
// findLeader - In order to find a leader for a given value number at a 
// specific basic block, we first obtain the list of all Values for that number,
// and then scan the list to find one whose block dominates the block in 
// question.  This is fast because dominator tree queries consist of only
// a few comparisons of DFS numbers.
Value *GVN::findLeader(BasicBlock *BB, uint32_t num) {
  LeaderTableEntry Vals = LeaderTable[num];
  Value *Val = 0;
  if (DT->dominates(Vals.BB, BB)) {
    Val = Vals.Val;
    if (isa<Constant>(Val)) return Val;
  }
  
    if (DT->dominates(Next->BB, BB)) {
      if (isa<Constant>(Next->Val)) return Next->Val;
      if (!Val) Val = Next->Val;
    }
/// replaceAllDominatedUsesWith - Replace all uses of 'From' with 'To' if the
/// use is dominated by the given basic block.  Returns the number of uses that
/// were replaced.
unsigned GVN::replaceAllDominatedUsesWith(Value *From, Value *To,
                                          BasicBlock *Root) {
  unsigned Count = 0;
  for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
       UI != UE; ) {
    Instruction *User = cast<Instruction>(*UI);
    unsigned OpNum = UI.getOperandNo();
    ++UI;

    if (DT->dominates(Root, User->getParent())) {
      User->setOperand(OpNum, To);
      ++Count;
    }
  }
  return Count;
}

/// propagateEquality - The given values are known to be equal in every block
/// dominated by 'Root'.  Exploit this, for example by replacing 'LHS' with
/// 'RHS' everywhere in the scope.  Returns whether a change was made.
bool GVN::propagateEquality(Value *LHS, Value *RHS, BasicBlock *Root) {
  if (LHS == RHS) return false;
  assert(LHS->getType() == RHS->getType() && "Equal but types differ!");

  // Don't try to propagate equalities between constants.
  if (isa<Constant>(LHS) && isa<Constant>(RHS))
    return false;

  // Make sure that any constants are on the right-hand side.  In general the
  // best results are obtained by placing the longest lived value on the RHS.
  if (isa<Constant>(LHS))
    std::swap(LHS, RHS);

  // If neither term is constant then bail out.  This is not for correctness,
  // it's just that the non-constant case is much less useful: it occurs just
  // as often as the constant case but handling it hardly ever results in an
  // improvement.
  if (!isa<Constant>(RHS))
    return false;

  // If value numbering later deduces that an instruction in the scope is equal
  // to 'LHS' then ensure it will be turned into 'RHS'.
  addToLeaderTable(VN.lookup_or_add(LHS), RHS, Root);

  // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope.  As
  // LHS always has at least one use that is not dominated by Root, this will
  // never do anything if LHS has only one use.
  bool Changed = false;
  if (!LHS->hasOneUse()) {
    unsigned NumReplacements = replaceAllDominatedUsesWith(LHS, RHS, Root);
    Changed |= NumReplacements > 0;
    NumGVNEqProp += NumReplacements;
  }

  // Now try to deduce additional equalities from this one.  For example, if the
  // known equality was "(A != B)" == "false" then it follows that A and B are
  // equal in the scope.  Only boolean equalities with an explicit true or false
  // RHS are currently supported.
  if (!RHS->getType()->isIntegerTy(1))
    // Not a boolean equality - bail out.
    return Changed;
  ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
  if (!CI)
    // RHS neither 'true' nor 'false' - bail out.
    return Changed;
  // Whether RHS equals 'true'.  Otherwise it equals 'false'.
  bool isKnownTrue = CI->isAllOnesValue();
  bool isKnownFalse = !isKnownTrue;

  // If "A && B" is known true then both A and B are known true.  If "A || B"
  // is known false then both A and B are known false.
  Value *A, *B;
  if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
      (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
    Changed |= propagateEquality(A, RHS, Root);
    Changed |= propagateEquality(B, RHS, Root);
    return Changed;
  }

  // If we are propagating an equality like "(A == B)" == "true" then also
  // propagate the equality A == B.
  if (ICmpInst *Cmp = dyn_cast<ICmpInst>(LHS)) {
    // Only equality comparisons are supported.
    if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) ||
        (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE)) {
      Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
      Changed |= propagateEquality(Op0, Op1, Root);
    }
    return Changed;
  }

  return Changed;
}
/// isOnlyReachableViaThisEdge - There is an edge from 'Src' to 'Dst'.  Return
/// true if every path from the entry block to 'Dst' passes via this edge.  In
/// particular 'Dst' must not be reachable via another edge from 'Src'.
static bool isOnlyReachableViaThisEdge(BasicBlock *Src, BasicBlock *Dst,
                                       DominatorTree *DT) {
  // First off, there must not be more than one edge from Src to Dst, there
  // should be exactly one.  So keep track of the number of times Src occurs
  // as a predecessor of Dst and fail if it's more than once.