Newer
Older
//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
Alkis Evlogimenos
committed
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
Alkis Evlogimenos
committed
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveInterval analysis pass which is used
// by the Linear Scan Register allocator. This pass linearizes the
// basic blocks of the function in DFS order and uses the
// LiveVariables pass to conservatively compute live intervals for
// each virtual and physical register.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "regalloc"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/Value.h"
Dan Gohman
committed
#include "llvm/Analysis/AliasAnalysis.h"
Alkis Evlogimenos
committed
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineDominators.h"
Alkis Evlogimenos
committed
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
Alkis Evlogimenos
committed
#include "llvm/CodeGen/Passes.h"
#include "llvm/Target/TargetRegisterInfo.h"
Alkis Evlogimenos
committed
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/DenseSet.h"
#include "LiveRangeCalc.h"
Lang Hames
committed
#include <limits>
Alkis Evlogimenos
committed
using namespace llvm;
Owen Anderson
committed
INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
"Live Interval Analysis", false, false)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
Owen Anderson
committed
INITIALIZE_PASS_DEPENDENCY(LiveVariables)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
Owen Anderson
committed
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
"Live Interval Analysis", false, false)
Alkis Evlogimenos
committed
Chris Lattner
committed
void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
Dan Gohman
committed
AU.addRequired<AliasAnalysis>();
AU.addPreserved<AliasAnalysis>();
Evan Cheng
committed
AU.addPreserved<LiveVariables>();
AU.addPreservedID(MachineLoopInfoID);
AU.addRequiredTransitiveID(MachineDominatorsID);
AU.addPreservedID(MachineDominatorsID);
AU.addPreserved<SlotIndexes>();
AU.addRequiredTransitive<SlotIndexes>();
MachineFunctionPass::getAnalysisUsage(AU);
Alkis Evlogimenos
committed
}
LiveIntervals::LiveIntervals() : MachineFunctionPass(ID),
DomTree(0), LRCalc(0) {
initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
}
LiveIntervals::~LiveIntervals() {
delete LRCalc;
}
Chris Lattner
committed
void LiveIntervals::releaseMemory() {
Owen Anderson
committed
// Free the live intervals themselves.
for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
delete VirtRegIntervals[TargetRegisterInfo::index2VirtReg(i)];
VirtRegIntervals.clear();
RegMaskSlots.clear();
RegMaskBits.clear();
RegMaskBlocks.clear();
for (unsigned i = 0, e = RegUnitIntervals.size(); i != e; ++i)
delete RegUnitIntervals[i];
RegUnitIntervals.clear();
// Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
VNInfoAllocator.Reset();
}
Owen Anderson
committed
/// runOnMachineFunction - Register allocate the whole function
///
bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
MF = &fn;
MRI = &MF->getRegInfo();
TM = &fn.getTarget();
TRI = TM->getRegisterInfo();
TII = TM->getInstrInfo();
AA = &getAnalysis<AliasAnalysis>();
LV = &getAnalysis<LiveVariables>();
Indexes = &getAnalysis<SlotIndexes>();
DomTree = &getAnalysis<MachineDominatorTree>();
if (!LRCalc)
LRCalc = new LiveRangeCalc();
AllocatableRegs = TRI->getAllocatableSet(fn);
ReservedRegs = TRI->getReservedRegs(fn);
Alkis Evlogimenos
committed
computeLiveInRegUnits();
Alkis Evlogimenos
committed
}
void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
OS << "********** INTERVALS **********\n";
// Dump the regunits.
for (unsigned i = 0, e = RegUnitIntervals.size(); i != e; ++i)
if (LiveInterval *LI = RegUnitIntervals[i])
OS << PrintRegUnit(i, TRI) << " = " << *LI << '\n';
for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
if (hasInterval(Reg))
OS << PrintReg(Reg) << " = " << getInterval(Reg) << '\n';
}
Evan Cheng
committed
printInstrs(OS);
}
void LiveIntervals::printInstrs(raw_ostream &OS) const {
OS << "********** MACHINEINSTRS **********\n";
MF->print(OS, Indexes);
Evan Cheng
committed
void LiveIntervals::dumpInstrs() const {
Evan Cheng
committed
}
static
bool MultipleDefsBySameMI(const MachineInstr &MI, unsigned MOIdx) {
unsigned Reg = MI.getOperand(MOIdx).getReg();
for (unsigned i = MOIdx+1, e = MI.getNumOperands(); i < e; ++i) {
const MachineOperand &MO = MI.getOperand(i);
if (!MO.isReg())
continue;
if (MO.getReg() == Reg && MO.isDef()) {
assert(MI.getOperand(MOIdx).getSubReg() != MO.getSubReg() &&
MI.getOperand(MOIdx).getSubReg() &&
(MO.getSubReg() || MO.isImplicit()));
return true;
}
}
return false;
}
/// isPartialRedef - Return true if the specified def at the specific index is
/// partially re-defining the specified live interval. A common case of this is
/// a definition of the sub-register.
bool LiveIntervals::isPartialRedef(SlotIndex MIIdx, MachineOperand &MO,
LiveInterval &interval) {
if (!MO.getSubReg() || MO.isEarlyClobber())
return false;
SlotIndex RedefIndex = MIIdx.getRegSlot();
const LiveRange *OldLR =
interval.getLiveRangeContaining(RedefIndex.getRegSlot(true));
MachineInstr *DefMI = getInstructionFromIndex(OldLR->valno->def);
if (DefMI != 0) {
return DefMI->findRegisterDefOperandIdx(interval.reg) != -1;
}
return false;
}
void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
Alkis Evlogimenos
committed
MachineBasicBlock::iterator mi,
MachineOperand& MO,
Evan Cheng
committed
unsigned MOIdx,
LiveInterval &interval) {
DEBUG(dbgs() << "\t\tregister: " << PrintReg(interval.reg, TRI));
// Virtual registers may be defined multiple times (due to phi
// elimination and 2-addr elimination). Much of what we do only has to be
// done once for the vreg. We use an empty interval to detect the first
LiveVariables::VarInfo& vi = LV->getVarInfo(interval.reg);
if (interval.empty()) {
// Get the Idx of the defining instructions.
SlotIndex defIndex = MIIdx.getRegSlot(MO.isEarlyClobber());
Jakob Stoklund Olesen
committed
// Make sure the first definition is not a partial redefinition.
assert(!MO.readsReg() && "First def cannot also read virtual register "
"missing <undef> flag?");
Jakob Stoklund Olesen
committed
VNInfo *ValNo = interval.getNextValue(defIndex, VNInfoAllocator);
assert(ValNo->id == 0 && "First value in interval is not 0?");
// Loop over all of the blocks that the vreg is defined in. There are
// two cases we have to handle here. The most common case is a vreg
// whose lifetime is contained within a basic block. In this case there
// will be a single kill, in MBB, which comes after the definition.
if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
// FIXME: what about dead vars?
killIdx = getInstructionIndex(vi.Kills[0]).getRegSlot();
killIdx = defIndex.getDeadSlot();
// If the kill happens after the definition, we have an intra-block
// live range.
if (killIdx > defIndex) {
Jeffrey Yasskin
committed
assert(vi.AliveBlocks.empty() &&
"Shouldn't be alive across any blocks!");
LiveRange LR(defIndex, killIdx, ValNo);
// The other case we handle is when a virtual register lives to the end
// of the defining block, potentially live across some blocks, then is
// live into some number of blocks, but gets killed. Start by adding a
// range that goes from this definition to the end of the defining block.
LiveRange NewLR(defIndex, getMBBEndIdx(mbb), ValNo);
bool PHIJoin = LV->isPHIJoin(interval.reg);
if (PHIJoin) {
// A phi join register is killed at the end of the MBB and revived as a
// new valno in the killing blocks.
assert(vi.AliveBlocks.empty() && "Phi join can't pass through blocks");
DEBUG(dbgs() << " phi-join");
ValNo->setHasPHIKill(true);
} else {
// Iterate over all of the blocks that the variable is completely
// live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
// live interval.
for (SparseBitVector<>::iterator I = vi.AliveBlocks.begin(),
E = vi.AliveBlocks.end(); I != E; ++I) {
MachineBasicBlock *aliveBlock = MF->getBlockNumbered(*I);
LiveRange LR(getMBBStartIdx(aliveBlock), getMBBEndIdx(aliveBlock),
ValNo);
interval.addRange(LR);
DEBUG(dbgs() << " +" << LR);
}
}
// Finally, this virtual register is live from the start of any killing
// block to the 'use' slot of the killing instruction.
for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
MachineInstr *Kill = vi.Kills[i];
SlotIndex Start = getMBBStartIdx(Kill->getParent());
SlotIndex killIdx = getInstructionIndex(Kill).getRegSlot();
// Create interval with one of a NEW value number. Note that this value
// number isn't actually defined by an instruction, weird huh? :)
if (PHIJoin) {
assert(getInstructionFromIndex(Start) == 0 &&
"PHI def index points at actual instruction.");
ValNo = interval.getNextValue(Start, VNInfoAllocator);
ValNo->setIsPHIDef(true);
}
LiveRange LR(Start, killIdx, ValNo);
if (MultipleDefsBySameMI(*mi, MOIdx))
// Multiple defs of the same virtual register by the same instruction.
// e.g. %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ...
// This is likely due to elimination of REG_SEQUENCE instructions. Return
// here since there is nothing to do.
return;
// If this is the second time we see a virtual register definition, it
// must be due to phi elimination or two addr elimination. If this is
// the result of two address elimination, then the vreg is one of the
// def-and-use register operand.
// It may also be partial redef like this:
// 80 %reg1041:6<def> = VSHRNv4i16 %reg1034<kill>, 12, pred:14, pred:%reg0
// 120 %reg1041:5<def> = VSHRNv4i16 %reg1039<kill>, 12, pred:14, pred:%reg0
bool PartReDef = isPartialRedef(MIIdx, MO, interval);
if (PartReDef || mi->isRegTiedToUseOperand(MOIdx)) {
// If this is a two-address definition, then we have already processed
// the live range. The only problem is that we didn't realize there
// are actually two values in the live interval. Because of this we
// need to take the LiveRegion that defines this register and split it
// into two values.
SlotIndex RedefIndex = MIIdx.getRegSlot(MO.isEarlyClobber());
const LiveRange *OldLR =
interval.getLiveRangeContaining(RedefIndex.getRegSlot(true));
VNInfo *OldValNo = OldLR->valno;
SlotIndex DefIndex = OldValNo->def.getRegSlot();
// Delete the previous value, which should be short and continuous,
// because the 2-addr copy must be in the same MBB as the redef.
interval.removeRange(DefIndex, RedefIndex);
Chris Lattner
committed
// The new value number (#1) is defined by the instruction we claimed
// defined value #0.
VNInfo *ValNo = interval.createValueCopy(OldValNo, VNInfoAllocator);
Chris Lattner
committed
// Value#0 is now defined by the 2-addr instruction.
OldValNo->def = RedefIndex;
// Add the new live interval which replaces the range for the input copy.
LiveRange LR(DefIndex, RedefIndex, ValNo);
interval.addRange(LR);
// If this redefinition is dead, we need to add a dummy unit live
// range covering the def slot.
Owen Anderson
committed
if (MO.isDead())
interval.addRange(LiveRange(RedefIndex, RedefIndex.getDeadSlot(),
DEBUG(dbgs() << " RESULT: " << interval);
} else if (LV->isPHIJoin(interval.reg)) {
// In the case of PHI elimination, each variable definition is only
// live until the end of the block. We've already taken care of the
// rest of the live range.
SlotIndex defIndex = MIIdx.getRegSlot();
if (MO.isEarlyClobber())
defIndex = MIIdx.getRegSlot(true);
Evan Cheng
committed
VNInfo *ValNo = interval.getNextValue(defIndex, VNInfoAllocator);
SlotIndex killIndex = getMBBEndIdx(mbb);
LiveRange LR(defIndex, killIndex, ValNo);
DEBUG(dbgs() << " phi-join +" << LR);
} else {
llvm_unreachable("Multiply defined register");
Alkis Evlogimenos
committed
Alkis Evlogimenos
committed
}
void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
MachineBasicBlock::iterator MI,
Evan Cheng
committed
MachineOperand& MO,
unsigned MOIdx) {
Owen Anderson
committed
if (TargetRegisterInfo::isVirtualRegister(MO.getReg()))
Evan Cheng
committed
handleVirtualRegisterDef(MBB, MI, MIIdx, MO, MOIdx,
Owen Anderson
committed
getOrCreateInterval(MO.getReg()));
Alkis Evlogimenos
committed
/// computeIntervals - computes the live intervals for virtual
Alkis Evlogimenos
committed
/// registers. for some ordering of the machine instructions [1,N] a
/// live interval is an interval [i, j) where 1 <= i <= j < N for
Alkis Evlogimenos
committed
/// which a variable is live
void LiveIntervals::computeIntervals() {
<< ((Value*)MF->getFunction())->getName() << '\n');
Evan Cheng
committed
RegMaskBlocks.resize(MF->getNumBlockIDs());
Evan Cheng
committed
SmallVector<unsigned, 8> UndefUses;
for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
MBBI != E; ++MBBI) {
MachineBasicBlock *MBB = MBBI;
RegMaskBlocks[MBB->getNumber()].first = RegMaskSlots.size();
Evan Cheng
committed
if (MBB->empty())
continue;
Owen Anderson
committed
// Track the index of the current machine instr.
DEBUG(dbgs() << "BB#" << MBB->getNumber()
<< ":\t\t# derived from " << MBB->getName() << "\n");
Owen Anderson
committed
// Skip over empty initial indices.
MIIndex = Indexes->getNextNonNullIndex(MIIndex);
for (MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
MI != miEnd; ++MI) {
if (MI->isDebugValue())
assert(Indexes->getInstructionFromIndex(MIIndex) == MI &&
"Lost SlotIndex synchronization");
for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
MachineOperand &MO = MI->getOperand(i);
// Collect register masks.
if (MO.isRegMask()) {
RegMaskSlots.push_back(MIIndex.getRegSlot());
RegMaskBits.push_back(MO.getRegMask());
continue;
}
if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
Evan Cheng
committed
continue;
// handle register defs - build intervals
Evan Cheng
committed
if (MO.isDef())
Evan Cheng
committed
handleRegisterDef(MBB, MI, MIIndex, MO, i);
Evan Cheng
committed
else if (MO.isUndef())
UndefUses.push_back(MO.getReg());
MIIndex = Indexes->getNextNonNullIndex(MIIndex);
Alkis Evlogimenos
committed
}
// Compute the number of register mask instructions in this block.
std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB->getNumber()];
RMB.second = RegMaskSlots.size() - RMB.first;;
Evan Cheng
committed
// Create empty intervals for registers defined by implicit_def's (except
// for those implicit_def that define values which are liveout of their
// blocks.
for (unsigned i = 0, e = UndefUses.size(); i != e; ++i) {
unsigned UndefReg = UndefUses[i];
(void)getOrCreateInterval(UndefReg);
}
Alkis Evlogimenos
committed
}
Alkis Evlogimenos
committed
Owen Anderson
committed
LiveInterval* LiveIntervals::createInterval(unsigned reg) {
float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? HUGE_VALF : 0.0F;
Owen Anderson
committed
return new LiveInterval(reg, Weight);
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
//===----------------------------------------------------------------------===//
// Register Unit Liveness
//===----------------------------------------------------------------------===//
//
// Fixed interference typically comes from ABI boundaries: Function arguments
// and return values are passed in fixed registers, and so are exception
// pointers entering landing pads. Certain instructions require values to be
// present in specific registers. That is also represented through fixed
// interference.
//
/// computeRegUnitInterval - Compute the live interval of a register unit, based
/// on the uses and defs of aliasing registers. The interval should be empty,
/// or contain only dead phi-defs from ABI blocks.
void LiveIntervals::computeRegUnitInterval(LiveInterval *LI) {
unsigned Unit = LI->reg;
assert(LRCalc && "LRCalc not initialized.");
LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
// The physregs aliasing Unit are the roots and their super-registers.
// Create all values as dead defs before extending to uses. Note that roots
// may share super-registers. That's OK because createDeadDefs() is
// idempotent. It is very rare for a register unit to have multiple roots, so
// uniquing super-registers is probably not worthwhile.
for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
unsigned Root = *Roots;
if (!MRI->reg_empty(Root))
LRCalc->createDeadDefs(LI, Root);
for (MCSuperRegIterator Supers(Root, TRI); Supers.isValid(); ++Supers) {
if (!MRI->reg_empty(*Supers))
LRCalc->createDeadDefs(LI, *Supers);
}
}
// Now extend LI to reach all uses.
// Ignore uses of reserved registers. We only track defs of those.
for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
unsigned Root = *Roots;
if (!isReserved(Root) && !MRI->reg_empty(Root))
LRCalc->extendToUses(LI, Root);
for (MCSuperRegIterator Supers(Root, TRI); Supers.isValid(); ++Supers) {
unsigned Reg = *Supers;
if (!isReserved(Reg) && !MRI->reg_empty(Reg))
LRCalc->extendToUses(LI, Reg);
}
}
}
/// computeLiveInRegUnits - Precompute the live ranges of any register units
/// that are live-in to an ABI block somewhere. Register values can appear
/// without a corresponding def when entering the entry block or a landing pad.
///
void LiveIntervals::computeLiveInRegUnits() {
RegUnitIntervals.resize(TRI->getNumRegUnits());
DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
// Keep track of the intervals allocated.
SmallVector<LiveInterval*, 8> NewIntvs;
// Check all basic blocks for live-ins.
for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
MFI != MFE; ++MFI) {
const MachineBasicBlock *MBB = MFI;
// We only care about ABI blocks: Entry + landing pads.
if ((MFI != MF->begin() && !MBB->isLandingPad()) || MBB->livein_empty())
continue;
// Create phi-defs at Begin for all live-in registers.
SlotIndex Begin = Indexes->getMBBStartIdx(MBB);
DEBUG(dbgs() << Begin << "\tBB#" << MBB->getNumber());
for (MachineBasicBlock::livein_iterator LII = MBB->livein_begin(),
LIE = MBB->livein_end(); LII != LIE; ++LII) {
for (MCRegUnitIterator Units(*LII, TRI); Units.isValid(); ++Units) {
unsigned Unit = *Units;
LiveInterval *Intv = RegUnitIntervals[Unit];
if (!Intv) {
Intv = RegUnitIntervals[Unit] = new LiveInterval(Unit, HUGE_VALF);
NewIntvs.push_back(Intv);
}
VNInfo *VNI = Intv->createDeadDef(Begin, getVNInfoAllocator());
DEBUG(dbgs() << ' ' << PrintRegUnit(Unit, TRI) << '#' << VNI->id);
}
}
DEBUG(dbgs() << '\n');
}
DEBUG(dbgs() << "Created " << NewIntvs.size() << " new intervals.\n");
// Compute the 'normal' part of the intervals.
for (unsigned i = 0, e = NewIntvs.size(); i != e; ++i)
computeRegUnitInterval(NewIntvs[i]);
}
/// shrinkToUses - After removing some uses of a register, shrink its live
/// range to just the remaining uses. This method does not compute reaching
/// defs for new uses, and it doesn't remove dead defs.
Jakob Stoklund Olesen
committed
bool LiveIntervals::shrinkToUses(LiveInterval *li,
Jakob Stoklund Olesen
committed
SmallVectorImpl<MachineInstr*> *dead) {
DEBUG(dbgs() << "Shrink: " << *li << '\n');
assert(TargetRegisterInfo::isVirtualRegister(li->reg)
// Find all the values used, including PHI kills.
SmallVector<std::pair<SlotIndex, VNInfo*>, 16> WorkList;
// Blocks that have already been added to WorkList as live-out.
SmallPtrSet<MachineBasicBlock*, 16> LiveOut;
// Visit all instructions reading li->reg.
for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(li->reg);
MachineInstr *UseMI = I.skipInstruction();) {
if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg))
continue;
SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
LiveRangeQuery LRQ(*li, Idx);
VNInfo *VNI = LRQ.valueIn();
if (!VNI) {
// This shouldn't happen: readsVirtualRegister returns true, but there is
// no live value. It is likely caused by a target getting <undef> flags
// wrong.
DEBUG(dbgs() << Idx << '\t' << *UseMI
<< "Warning: Instr claims to read non-existent value in "
<< *li << '\n');
continue;
}
// Special case: An early-clobber tied operand reads and writes the
// register one slot early.
if (VNInfo *DefVNI = LRQ.valueDefined())
Idx = DefVNI->def;
WorkList.push_back(std::make_pair(Idx, VNI));
}
// Create a new live interval with only minimal live segments per def.
LiveInterval NewLI(li->reg, 0);
for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
I != E; ++I) {
VNInfo *VNI = *I;
if (VNI->isUnused())
continue;
Jakob Stoklund Olesen
committed
NewLI.addRange(LiveRange(VNI->def, VNI->def.getDeadSlot(), VNI));
Jakob Stoklund Olesen
committed
// Keep track of the PHIs that are in use.
SmallPtrSet<VNInfo*, 8> UsedPHIs;
// Extend intervals to reach all uses in WorkList.
while (!WorkList.empty()) {
SlotIndex Idx = WorkList.back().first;
VNInfo *VNI = WorkList.back().second;
WorkList.pop_back();
const MachineBasicBlock *MBB = getMBBFromIndex(Idx.getPrevSlot());
SlotIndex BlockStart = getMBBStartIdx(MBB);
Jakob Stoklund Olesen
committed
// Extend the live range for VNI to be live at Idx.
if (VNInfo *ExtVNI = NewLI.extendInBlock(BlockStart, Idx)) {
Jakob Stoklund Olesen
committed
assert(ExtVNI == VNI && "Unexpected existing value number");
// Is this a PHIDef we haven't seen before?
if (!VNI->isPHIDef() || VNI->def != BlockStart || !UsedPHIs.insert(VNI))
Jakob Stoklund Olesen
committed
continue;
// The PHI is live, make sure the predecessors are live-out.
for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
PE = MBB->pred_end(); PI != PE; ++PI) {
if (!LiveOut.insert(*PI))
continue;
SlotIndex Stop = getMBBEndIdx(*PI);
Jakob Stoklund Olesen
committed
// A predecessor is not required to have a live-out value for a PHI.
if (VNInfo *PVNI = li->getVNInfoBefore(Stop))
Jakob Stoklund Olesen
committed
WorkList.push_back(std::make_pair(Stop, PVNI));
}
continue;
}
// VNI is live-in to MBB.
DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
NewLI.addRange(LiveRange(BlockStart, Idx, VNI));
// Make sure VNI is live-out from the predecessors.
for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
PE = MBB->pred_end(); PI != PE; ++PI) {
if (!LiveOut.insert(*PI))
continue;
SlotIndex Stop = getMBBEndIdx(*PI);
assert(li->getVNInfoBefore(Stop) == VNI &&
"Wrong value out of predecessor");
WorkList.push_back(std::make_pair(Stop, VNI));
}
}
// Handle dead values.
Jakob Stoklund Olesen
committed
bool CanSeparate = false;
for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
I != E; ++I) {
VNInfo *VNI = *I;
if (VNI->isUnused())
continue;
LiveInterval::iterator LII = NewLI.FindLiveRangeContaining(VNI->def);
assert(LII != NewLI.end() && "Missing live range for PHI");
Jakob Stoklund Olesen
committed
if (LII->end != VNI->def.getDeadSlot())
// This is a dead PHI. Remove it.
VNI->setIsUnused(true);
NewLI.removeRange(*LII);
Jakob Stoklund Olesen
committed
DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n");
CanSeparate = true;
} else {
// This is a dead def. Make sure the instruction knows.
MachineInstr *MI = getInstructionFromIndex(VNI->def);
assert(MI && "No instruction defining live value");
MI->addRegisterDead(li->reg, TRI);
Jakob Stoklund Olesen
committed
if (dead && MI->allDefsAreDead()) {
DEBUG(dbgs() << "All defs dead: " << VNI->def << '\t' << *MI);
Jakob Stoklund Olesen
committed
dead->push_back(MI);
}
}
}
// Move the trimmed ranges back.
li->ranges.swap(NewLI.ranges);
DEBUG(dbgs() << "Shrunk: " << *li << '\n');
Jakob Stoklund Olesen
committed
return CanSeparate;
//===----------------------------------------------------------------------===//
// Register allocator hooks.
//
Jakob Stoklund Olesen
committed
void LiveIntervals::addKillFlags() {
for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
if (MRI->reg_nodbg_empty(Reg))
Jakob Stoklund Olesen
committed
continue;
LiveInterval *LI = &getInterval(Reg);
Jakob Stoklund Olesen
committed
// Every instruction that kills Reg corresponds to a live range end point.
for (LiveInterval::iterator RI = LI->begin(), RE = LI->end(); RI != RE;
++RI) {
// A block index indicates an MBB edge.
if (RI->end.isBlock())
Jakob Stoklund Olesen
committed
continue;
MachineInstr *MI = getInstructionFromIndex(RI->end);
if (!MI)
continue;
MI->addRegisterKilled(Reg, NULL);
}
}
}
MachineBasicBlock*
LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
// A local live range must be fully contained inside the block, meaning it is
// defined and killed at instructions, not at block boundaries. It is not
// live in or or out of any block.
//
// It is technically possible to have a PHI-defined live range identical to a
// single block, but we are going to return false in that case.
SlotIndex Start = LI.beginIndex();
if (Start.isBlock())
return NULL;
SlotIndex Stop = LI.endIndex();
if (Stop.isBlock())
return NULL;
// getMBBFromIndex doesn't need to search the MBB table when both indexes
// belong to proper instructions.
MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
return MBB1 == MBB2 ? MBB1 : NULL;
float
LiveIntervals::getSpillWeight(bool isDef, bool isUse, unsigned loopDepth) {
// Limit the loop depth ridiculousness.
if (loopDepth > 200)
loopDepth = 200;
// The loop depth is used to roughly estimate the number of times the
// instruction is executed. Something like 10^d is simple, but will quickly
// overflow a float. This expression behaves like 10^d for small d, but is
// more tempered for large d. At d=200 we get 6.7e33 which leaves a bit of
// headroom before overflow.
NAKAMURA Takumi
committed
// By the way, powf() might be unavailable here. For consistency,
// We may take pow(double,double).
float lc = std::pow(1 + (100.0 / (loopDepth + 10)), (double)loopDepth);
return (isDef + isUse) * lc;
}
Owen Anderson
committed
LiveRange LiveIntervals::addLiveRangeToEndOfBlock(unsigned reg,
MachineInstr* startInst) {
Owen Anderson
committed
LiveInterval& Interval = getOrCreateInterval(reg);
VNInfo* VN = Interval.getNextValue(
SlotIndex(getInstructionIndex(startInst).getRegSlot()),
LiveRange LR(
SlotIndex(getInstructionIndex(startInst).getRegSlot()),
getMBBEndIdx(startInst->getParent()), VN);
Owen Anderson
committed
Interval.addRange(LR);
Owen Anderson
committed
return LR;
}
//===----------------------------------------------------------------------===//
// Register mask functions
//===----------------------------------------------------------------------===//
bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
BitVector &UsableRegs) {
if (LI.empty())
return false;
LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();
// Use a smaller arrays for local live ranges.
ArrayRef<SlotIndex> Slots;
ArrayRef<const uint32_t*> Bits;
if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
Slots = getRegMaskSlotsInBlock(MBB->getNumber());
Bits = getRegMaskBitsInBlock(MBB->getNumber());
} else {
Slots = getRegMaskSlots();
Bits = getRegMaskBits();
}
// We are going to enumerate all the register mask slots contained in LI.
// Start with a binary search of RegMaskSlots to find a starting point.
ArrayRef<SlotIndex>::iterator SlotI =
std::lower_bound(Slots.begin(), Slots.end(), LiveI->start);
ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
// No slots in range, LI begins after the last call.
if (SlotI == SlotE)
return false;
bool Found = false;
for (;;) {
assert(*SlotI >= LiveI->start);
// Loop over all slots overlapping this segment.
while (*SlotI < LiveI->end) {
// *SlotI overlaps LI. Collect mask bits.
if (!Found) {
// This is the first overlap. Initialize UsableRegs to all ones.
UsableRegs.clear();
UsableRegs.resize(TRI->getNumRegs(), true);
Found = true;
}
// Remove usable registers clobbered by this mask.
UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]);
if (++SlotI == SlotE)
return Found;
}
// *SlotI is beyond the current LI segment.
LiveI = LI.advanceTo(LiveI, *SlotI);
if (LiveI == LiveE)
return Found;
// Advance SlotI until it overlaps.
while (*SlotI < LiveI->start)
if (++SlotI == SlotE)
return Found;
}
}
Lang Hames
committed
//===----------------------------------------------------------------------===//
// IntervalUpdate class.
//===----------------------------------------------------------------------===//
// HMEditor is a toolkit used by handleMove to trim or extend live intervals.
Lang Hames
committed
class LiveIntervals::HMEditor {
private:
LiveIntervals& LIS;
const MachineRegisterInfo& MRI;
const TargetRegisterInfo& TRI;
SlotIndex NewIdx;
Lang Hames
committed
Lang Hames
committed
typedef std::pair<LiveInterval*, LiveRange*> IntRangePair;
typedef DenseSet<IntRangePair> RangeSet;
struct RegRanges {
LiveRange* Use;
LiveRange* EC;
LiveRange* Dead;
LiveRange* Def;
RegRanges() : Use(0), EC(0), Dead(0), Def(0) {}
};
typedef DenseMap<unsigned, RegRanges> BundleRanges;
Lang Hames
committed
public:
HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
const TargetRegisterInfo& TRI, SlotIndex NewIdx)
: LIS(LIS), MRI(MRI), TRI(TRI), NewIdx(NewIdx) {}
Lang Hames
committed
// Update intervals for all operands of MI from OldIdx to NewIdx.
// This assumes that MI used to be at OldIdx, and now resides at
// NewIdx.
Lang Hames
committed
void moveAllRangesFrom(MachineInstr* MI, SlotIndex OldIdx) {
assert(NewIdx != OldIdx && "No-op move? That's a bit strange.");
Lang Hames
committed
// Collect the operands.
RangeSet Entering, Internal, Exiting;
bool hasRegMaskOp = false;
collectRanges(MI, Entering, Internal, Exiting, hasRegMaskOp, OldIdx);
Lang Hames
committed
// To keep the LiveRanges valid within an interval, move the ranges closest
// to the destination first. This prevents ranges from overlapping, to that
// APIs like removeRange still work.
if (NewIdx < OldIdx) {
moveAllEnteringFrom(OldIdx, Entering);
moveAllInternalFrom(OldIdx, Internal);
moveAllExitingFrom(OldIdx, Exiting);
}
else {
moveAllExitingFrom(OldIdx, Exiting);
moveAllInternalFrom(OldIdx, Internal);
moveAllEnteringFrom(OldIdx, Entering);
}
Lang Hames
committed
if (hasRegMaskOp)
updateRegMaskSlots(OldIdx);
Lang Hames
committed
#ifndef NDEBUG
LIValidator validator;
validator = std::for_each(Entering.begin(), Entering.end(), validator);
validator = std::for_each(Internal.begin(), Internal.end(), validator);
validator = std::for_each(Exiting.begin(), Exiting.end(), validator);
assert(validator.rangesOk() && "moveAllOperandsFrom broke liveness.");
Lang Hames
committed
#endif
Lang Hames
committed
}
Lang Hames
committed
// Update intervals for all operands of MI to refer to BundleStart's
// SlotIndex.
void moveAllRangesInto(MachineInstr* MI, MachineInstr* BundleStart) {
if (MI == BundleStart)
return; // Bundling instr with itself - nothing to do.
SlotIndex OldIdx = LIS.getSlotIndexes()->getInstructionIndex(MI);
assert(LIS.getSlotIndexes()->getInstructionFromIndex(OldIdx) == MI &&
"SlotIndex <-> Instruction mapping broken for MI");
Lang Hames
committed
// Collect all ranges already in the bundle.
MachineBasicBlock::instr_iterator BII(BundleStart);
RangeSet Entering, Internal, Exiting;
bool hasRegMaskOp = false;
Lang Hames
committed
collectRanges(BII, Entering, Internal, Exiting, hasRegMaskOp, NewIdx);
assert(!hasRegMaskOp && "Can't have RegMask operand in bundle.");
for (++BII; &*BII == MI || BII->isInsideBundle(); ++BII) {
if (&*BII == MI)
continue;
collectRanges(BII, Entering, Internal, Exiting, hasRegMaskOp, NewIdx);
assert(!hasRegMaskOp && "Can't have RegMask operand in bundle.");
}
BundleRanges BR = createBundleRanges(Entering, Internal, Exiting);
Entering.clear();
Internal.clear();
Exiting.clear();
collectRanges(MI, Entering, Internal, Exiting, hasRegMaskOp, OldIdx);
Lang Hames
committed
assert(!hasRegMaskOp && "Can't have RegMask operand in bundle.");
DEBUG(dbgs() << "Entering: " << Entering.size() << "\n");
DEBUG(dbgs() << "Internal: " << Internal.size() << "\n");
DEBUG(dbgs() << "Exiting: " << Exiting.size() << "\n");
moveAllEnteringFromInto(OldIdx, Entering, BR);
moveAllInternalFromInto(OldIdx, Internal, BR);
moveAllExitingFromInto(OldIdx, Exiting, BR);
Lang Hames
committed
#ifndef NDEBUG
LIValidator validator;
validator = std::for_each(Entering.begin(), Entering.end(), validator);
validator = std::for_each(Internal.begin(), Internal.end(), validator);
validator = std::for_each(Exiting.begin(), Exiting.end(), validator);
assert(validator.rangesOk() && "moveAllOperandsInto broke liveness.");
#endif
}
Lang Hames
committed
private:
#ifndef NDEBUG
class LIValidator {
private:
DenseSet<const LiveInterval*> Checked, Bogus;
public:
void operator()(const IntRangePair& P) {
const LiveInterval* LI = P.first;
if (Checked.count(LI))
return;
Checked.insert(LI);
if (LI->empty())
return;
SlotIndex LastEnd = LI->begin()->start;
for (LiveInterval::const_iterator LRI = LI->begin(), LRE = LI->end();
LRI != LRE; ++LRI) {
const LiveRange& LR = *LRI;
if (LastEnd > LR.start || LR.start >= LR.end)
Bogus.insert(LI);
LastEnd = LR.end;
Lang Hames
committed
}
}
Lang Hames
committed
bool rangesOk() const {
return Bogus.empty();
Lang Hames
committed
}
Lang Hames
committed
};
#endif
Lang Hames
committed
Lang Hames
committed
// Collect IntRangePairs for all operands of MI that may need fixing.
// Treat's MI's index as OldIdx (regardless of what it is in SlotIndexes'
// maps).
void collectRanges(MachineInstr* MI, RangeSet& Entering, RangeSet& Internal,
RangeSet& Exiting, bool& hasRegMaskOp, SlotIndex OldIdx) {
hasRegMaskOp = false;
for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
MOE = MI->operands_end();
MOI != MOE; ++MOI) {
const MachineOperand& MO = *MOI;
if (MO.isRegMask()) {
hasRegMaskOp = true;
continue;
}
if (!MO.isReg() || MO.getReg() == 0)
Lang Hames
committed
continue;
unsigned Reg = MO.getReg();
Lang Hames
committed
// TODO: Currently we're skipping uses that are reserved or have no
// interval, but we're not updating their kills. This should be
// fixed.
if (TargetRegisterInfo::isPhysicalRegister(Reg) && LIS.isReserved(Reg))
Lang Hames
committed
continue;
// Collect ranges for register units. These live ranges are computed on
// demand, so just skip any that haven't been computed yet.
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units)
if (LiveInterval *LI = LIS.getCachedRegUnit(*Units))
collectRanges(MO, LI, Entering, Internal, Exiting, OldIdx);
} else {
// Collect ranges for individual virtual registers.
collectRanges(MO, &LIS.getInterval(Reg),
Entering, Internal, Exiting, OldIdx);