Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
Value *OneElt = Val;
// Splat the value out to the right number of bits.
for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
// If we can double the number of bytes set, do it.
if (NumBytesSet*2 <= LoadSize) {
Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
Val = Builder.CreateOr(Val, ShVal);
NumBytesSet <<= 1;
continue;
}
// Otherwise insert one byte at a time.
Value *ShVal = Builder.CreateShl(Val, 1*8);
Val = Builder.CreateOr(OneElt, ShVal);
++NumBytesSet;
}
return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
}
// Otherwise, this is a memcpy/memmove from a constant global.
MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
Constant *Src = cast<Constant>(MTI->getSource());
// Otherwise, see if we can constant fold a load from the constant with the
// offset applied as appropriate.
Src = ConstantExpr::getBitCast(Src,
llvm::Type::getInt8PtrTy(Src->getContext()));
Constant *OffsetCst =
ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
return ConstantFoldLoadFromConstPtr(Src, &TD);
}
struct AvailableValueInBlock {
/// BB - The basic block in question.
BasicBlock *BB;
enum ValType {
SimpleVal, // A simple offsetted value that is accessed.
LoadVal, // A value produced by a load.
MemIntrin // A memory intrinsic which is loaded from.
};
/// V - The value that is live out of the block.
PointerIntPair<Value *, 2, ValType> Val;
/// Offset - The byte offset in Val that is interesting for the load query.
unsigned Offset;
static AvailableValueInBlock get(BasicBlock *BB, Value *V,
unsigned Offset = 0) {
AvailableValueInBlock Res;
Res.BB = BB;
Res.Val.setPointer(V);
Res.Val.setInt(SimpleVal);
Res.Offset = Offset;
static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
unsigned Offset = 0) {
AvailableValueInBlock Res;
Res.BB = BB;
Res.Val.setPointer(MI);
Res.Val.setInt(MemIntrin);
Res.Offset = Offset;
return Res;
}
static AvailableValueInBlock getLoad(BasicBlock *BB, LoadInst *LI,
unsigned Offset = 0) {
AvailableValueInBlock Res;
Res.BB = BB;
Res.Val.setPointer(LI);
Res.Val.setInt(LoadVal);
Res.Offset = Offset;
return Res;
}
bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
Value *getSimpleValue() const {
assert(isSimpleValue() && "Wrong accessor");
return Val.getPointer();
}
LoadInst *getCoercedLoadValue() const {
assert(isCoercedLoadValue() && "Wrong accessor");
return cast<LoadInst>(Val.getPointer());
}
MemIntrinsic *getMemIntrinValue() const {
assert(isMemIntrinValue() && "Wrong accessor");
return cast<MemIntrinsic>(Val.getPointer());
}
/// MaterializeAdjustedValue - Emit code into this block to adjust the value
/// defined here to the specified type. This handles various coercion cases.
Chris Lattner
committed
Value *MaterializeAdjustedValue(const Type *LoadTy, GVN &gvn) const {
Value *Res;
if (isSimpleValue()) {
Res = getSimpleValue();
if (Res->getType() != LoadTy) {
Chris Lattner
committed
const TargetData *TD = gvn.getTargetData();
assert(TD && "Need target data to handle type mismatch case");
Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
*TD);
DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << " "
<< *getSimpleValue() << '\n'
<< *Res << '\n' << "\n\n\n");
}
} else if (isCoercedLoadValue()) {
LoadInst *Load = getCoercedLoadValue();
if (Load->getType() == LoadTy && Offset == 0) {
Res = Load;
} else {
Res = GetLoadValueForLoad(Load, Offset, LoadTy, BB->getTerminator(),
Chris Lattner
committed
gvn);
DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << " "
<< *getCoercedLoadValue() << '\n'
<< *Res << '\n' << "\n\n\n");
}
Chris Lattner
committed
const TargetData *TD = gvn.getTargetData();
assert(TD && "Need target data to handle type mismatch case");
Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
LoadTy, BB->getTerminator(), *TD);
DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
<< " " << *getMemIntrinValue() << '\n'
<< *Res << '\n' << "\n\n\n");
}
return Res;
}
} // end anonymous namespace
/// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
/// construct SSA form, allowing us to eliminate LI. This returns the value
/// that should be used at LI's definition site.
static Value *ConstructSSAForLoadSet(LoadInst *LI,
SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
Chris Lattner
committed
GVN &gvn) {
Chris Lattner
committed
// Check for the fully redundant, dominating load case. In this case, we can
// just use the dominating value directly.
if (ValuesPerBlock.size() == 1 &&
Chris Lattner
committed
gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
LI->getParent()))
return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), gvn);
Chris Lattner
committed
// Otherwise, we have to construct SSA form.
SmallVector<PHINode*, 8> NewPHIs;
SSAUpdater SSAUpdate(&NewPHIs);
SSAUpdate.Initialize(LI->getType(), LI->getName());
const Type *LoadTy = LI->getType();
for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
const AvailableValueInBlock &AV = ValuesPerBlock[i];
BasicBlock *BB = AV.BB;
if (SSAUpdate.HasValueForBlock(BB))
continue;
Chris Lattner
committed
SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, gvn));
// Perform PHI construction.
Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
// If new PHI nodes were created, notify alias analysis.
Chris Lattner
committed
if (V->getType()->isPointerTy()) {
AliasAnalysis *AA = gvn.getAliasAnalysis();
for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
AA->copyValue(LI, NewPHIs[i]);
Owen Anderson
committed
// Now that we've copied information to the new PHIs, scan through
// them again and inform alias analysis that we've added potentially
// escaping uses to any values that are operands to these PHIs.
for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) {
PHINode *P = NewPHIs[i];
for (unsigned ii = 0, ee = P->getNumIncomingValues(); ii != ee; ++ii) {
unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
AA->addEscapingUse(P->getOperandUse(jj));
}
Owen Anderson
committed
}
Chris Lattner
committed
}
return V;
}
static bool isLifetimeStart(const Instruction *Inst) {
if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
Owen Anderson
committed
return II->getIntrinsicID() == Intrinsic::lifetime_start;
/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
/// non-local by performing PHI construction.
bool GVN::processNonLocalLoad(LoadInst *LI) {
// Find the non-local dependencies of the load.
Chris Lattner
committed
SmallVector<NonLocalDepResult, 64> Deps;
AliasAnalysis::Location Loc = VN.getAliasAnalysis()->getLocation(LI);
MD->getNonLocalPointerDependency(Loc, true, LI->getParent(), Deps);
//DEBUG(dbgs() << "INVESTIGATING NONLOCAL LOAD: "
// << Deps.size() << *LI << '\n');
// If we had to process more than one hundred blocks to find the
// dependencies, this load isn't worth worrying about. Optimizing
// it will be too expensive.
if (Deps.size() > 100)
return false;
// If we had a phi translation failure, we'll have a single entry which is a
// clobber in the current block. Reject this early.
if (Deps.size() == 1 && Deps[0].getResult().isUnknown()) {
dbgs() << "GVN: non-local load ";
WriteAsOperand(dbgs(), LI);
dbgs() << " has unknown dependencies\n";
return false;
// Filter out useless results (non-locals, etc). Keep track of the blocks
// where we have a value available in repl, also keep track of whether we see
// dependencies that produce an unknown value for the load (such as a call
// that could potentially clobber the load).
SmallVector<AvailableValueInBlock, 16> ValuesPerBlock;
SmallVector<BasicBlock*, 16> UnavailableBlocks;
for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
BasicBlock *DepBB = Deps[i].getBB();
MemDepResult DepInfo = Deps[i].getResult();
if (DepInfo.isUnknown()) {
UnavailableBlocks.push_back(DepBB);
continue;
}
if (DepInfo.isClobber()) {
// The address being loaded in this non-local block may not be the same as
// the pointer operand of the load if PHI translation occurs. Make sure
// to consider the right address.
Value *Address = Deps[i].getAddress();
// If the dependence is to a store that writes to a superset of the bits
// read by the load, we can extract the bits we need for the load from the
// stored value.
if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
if (TD && Address) {
int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
DepSI, *TD);
if (Offset != -1) {
ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
DepSI->getValueOperand(),
Offset));
continue;
}
}
}
// Check to see if we have something like this:
// load i32* P
// load i8* (P+1)
// if we have this, replace the later with an extraction from the former.
if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
// If this is a clobber and L is the first instruction in its block, then
// we have the first instruction in the entry block.
if (DepLI != LI && Address && TD) {
int Offset = AnalyzeLoadFromClobberingLoad(LI->getType(),
LI->getPointerOperand(),
DepLI, *TD);
if (Offset != -1) {
ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB,DepLI,
Offset));
continue;
}
}
}
// If the clobbering value is a memset/memcpy/memmove, see if we can
// forward a value on from it.
if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
if (TD && Address) {
int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
DepMI, *TD);
if (Offset != -1) {
ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
Offset));
continue;
}
}
}
UnavailableBlocks.push_back(DepBB);
continue;
}
assert(DepInfo.isDef() && "Expecting def here");
Instruction *DepInst = DepInfo.getInst();
// Loading the allocation -> undef.
if (isa<AllocaInst>(DepInst) || isMalloc(DepInst) ||
Owen Anderson
committed
// Loading immediately after lifetime begin -> undef.
isLifetimeStart(DepInst)) {
ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
UndefValue::get(LI->getType())));
continue;
}
if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
// Reject loads and stores that are to the same address but are of
// different types if we have to.
if (S->getValueOperand()->getType() != LI->getType()) {
// If the stored value is larger or equal to the loaded value, we can
// reuse it.
if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
LI->getType(), *TD)) {
UnavailableBlocks.push_back(DepBB);
continue;
}
ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
S->getValueOperand()));
continue;
}
if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
// If the types mismatch and we can't handle it, reject reuse of the load.
if (LD->getType() != LI->getType()) {
// If the stored value is larger or equal to the loaded value, we can
// reuse it.
if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
UnavailableBlocks.push_back(DepBB);
continue;
}
ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB, LD));
continue;
UnavailableBlocks.push_back(DepBB);
continue;
// If we have no predecessors that produce a known value for this load, exit
// early.
if (ValuesPerBlock.empty()) return false;
// If all of the instructions we depend on produce a known value for this
// load, then it is fully redundant and we can use PHI insertion to compute
// its value. Insert PHIs and remove the fully redundant value now.
if (UnavailableBlocks.empty()) {
DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
// Perform PHI construction.
Chris Lattner
committed
Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
LI->replaceAllUsesWith(V);
if (isa<PHINode>(V))
V->takeName(LI);
Duncan Sands
committed
if (V->getType()->isPointerTy())
MD->invalidateCachedPointerInfo(V);
Chris Lattner
committed
markInstructionForDeletion(LI);
++NumGVNLoad;
return true;
if (!EnablePRE || !EnableLoadPRE)
return false;
// Okay, we have *some* definitions of the value. This means that the value
// is available in some of our (transitive) predecessors. Lets think about
// doing PRE of this load. This will involve inserting a new load into the
// predecessor when it's not available. We could do this in general, but
// prefer to not increase code size. As such, we only do this when we know
// that we only have to insert *one* load (which means we're basically moving
// the load, not inserting a new one).
Owen Anderson
committed
SmallPtrSet<BasicBlock *, 4> Blockers;
for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
Blockers.insert(UnavailableBlocks[i]);
// Lets find first basic block with more than one predecessor. Walk backwards
// through predecessors if needed.
BasicBlock *LoadBB = LI->getParent();
Owen Anderson
committed
BasicBlock *TmpBB = LoadBB;
bool isSinglePred = false;
bool allSingleSucc = true;
Owen Anderson
committed
while (TmpBB->getSinglePredecessor()) {
isSinglePred = true;
TmpBB = TmpBB->getSinglePredecessor();
if (TmpBB == LoadBB) // Infinite (unreachable) loop.
return false;
if (Blockers.count(TmpBB))
return false;
Owen Anderson
committed
// If any of these blocks has more than one successor (i.e. if the edge we
// just traversed was critical), then there are other paths through this
// block along which the load may not be anticipated. Hoisting the load
// above this block would be adding the load to execution paths along
// which it was not previously executed.
if (TmpBB->getTerminator()->getNumSuccessors() != 1)
Owen Anderson
committed
return false;
Owen Anderson
committed
}
Owen Anderson
committed
assert(TmpBB);
LoadBB = TmpBB;
// FIXME: It is extremely unclear what this loop is doing, other than
// artificially restricting loadpre.
Owen Anderson
committed
if (isSinglePred) {
bool isHot = false;
for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
const AvailableValueInBlock &AV = ValuesPerBlock[i];
if (AV.isSimpleValue())
// "Hot" Instruction is in some loop (because it dominates its dep.
// instruction).
if (Instruction *I = dyn_cast<Instruction>(AV.getSimpleValue()))
if (DT->dominates(LI, I)) {
isHot = true;
break;
}
}
Owen Anderson
committed
// We are interested only in "hot" instructions. We don't want to do any
// mis-optimizations here.
if (!isHot)
return false;
}
Bob Wilson
committed
// Check to see how many predecessors have the loaded value fully
// available.
DenseMap<BasicBlock*, Value*> PredLoads;
DenseMap<BasicBlock*, char> FullyAvailableBlocks;
for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
FullyAvailableBlocks[UnavailableBlocks[i]] = false;
SmallVector<std::pair<TerminatorInst*, unsigned>, 4> NeedToSplit;
for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
PI != E; ++PI) {
Bob Wilson
committed
BasicBlock *Pred = *PI;
if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) {
continue;
Bob Wilson
committed
}
PredLoads[Pred] = 0;
Bob Wilson
committed
if (Pred->getTerminator()->getNumSuccessors() != 1) {
if (isa<IndirectBrInst>(Pred->getTerminator())) {
DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
<< Pred->getName() << "': " << *LI << '\n');
return false;
}
unsigned SuccNum = GetSuccessorNumber(Pred, LoadBB);
NeedToSplit.push_back(std::make_pair(Pred->getTerminator(), SuccNum));
Bob Wilson
committed
}
if (!NeedToSplit.empty()) {
toSplit.append(NeedToSplit.begin(), NeedToSplit.end());
return false;
}
Bob Wilson
committed
// Decide whether PRE is profitable for this load.
unsigned NumUnavailablePreds = PredLoads.size();
assert(NumUnavailablePreds != 0 &&
"Fully available value should be eliminated above!");
// If this load is unavailable in multiple predecessors, reject it.
// FIXME: If we could restructure the CFG, we could make a common pred with
// all the preds that don't have an available LI and insert a new load into
// that one block.
if (NumUnavailablePreds != 1)
Bob Wilson
committed
return false;
// Check if the load can safely be moved to all the unavailable predecessors.
bool CanDoPRE = true;
SmallVector<Instruction*, 8> NewInsts;
Bob Wilson
committed
for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
E = PredLoads.end(); I != E; ++I) {
BasicBlock *UnavailablePred = I->first;
// Do PHI translation to get its value in the predecessor if necessary. The
// returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
// If all preds have a single successor, then we know it is safe to insert
// the load on the pred (?!?), so we can insert code to materialize the
// pointer if it is not available.
PHITransAddr Address(LI->getPointerOperand(), TD);
Bob Wilson
committed
Value *LoadPtr = 0;
if (allSingleSucc) {
LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
*DT, NewInsts);
} else {
Address.PHITranslateValue(LoadBB, UnavailablePred, DT);
Bob Wilson
committed
LoadPtr = Address.getAddr();
}
Bob Wilson
committed
// If we couldn't find or insert a computation of this phi translated value,
// we fail PRE.
if (LoadPtr == 0) {
DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
<< *LI->getPointerOperand() << "\n");
Bob Wilson
committed
CanDoPRE = false;
break;
}
Bob Wilson
committed
// Make sure it is valid to move this load here. We have to watch out for:
// @1 = getelementptr (i8* p, ...
// test p and branch if == 0
// load @1
// It is valid to have the getelementptr before the test, even if p can
// be 0, as getelementptr only does address arithmetic.
Bob Wilson
committed
// If we are not pushing the value through any multiple-successor blocks
// we do not have this case. Otherwise, check that the load is safe to
// put anywhere; this can be improved, but should be conservatively safe.
if (!allSingleSucc &&
// FIXME: REEVALUTE THIS.
!isSafeToLoadUnconditionally(LoadPtr,
UnavailablePred->getTerminator(),
LI->getAlignment(), TD)) {
CanDoPRE = false;
break;
}
I->second = LoadPtr;
Bob Wilson
committed
if (!CanDoPRE) {
while (!NewInsts.empty()) {
Instruction *I = NewInsts.pop_back_val();
if (MD) MD->removeInstruction(I);
I->eraseFromParent();
}
// Okay, we can eliminate this load by inserting a reload in the predecessor
// and using PHI construction to get the value in the other predecessors, do
// it.
DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
DEBUG(if (!NewInsts.empty())
dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
<< *NewInsts.back() << '\n');
Bob Wilson
committed
// Assign value numbers to the new instructions.
for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
// FIXME: We really _ought_ to insert these value numbers into their
// parent's availability map. However, in doing so, we risk getting into
// ordering issues. If a block hasn't been processed yet, we would be
// marking a value as AVAIL-IN, which isn't what we intend.
VN.lookup_or_add(NewInsts[i]);
}
for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
E = PredLoads.end(); I != E; ++I) {
BasicBlock *UnavailablePred = I->first;
Value *LoadPtr = I->second;
Instruction *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
LI->getAlignment(),
UnavailablePred->getTerminator());
// Transfer the old load's TBAA tag to the new load.
if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa))
NewLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
Bob Wilson
committed
// Transfer DebugLoc.
NewLoad->setDebugLoc(LI->getDebugLoc());
Bob Wilson
committed
// Add the newly created load.
ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
NewLoad));
MD->invalidateCachedPointerInfo(LoadPtr);
DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
Bob Wilson
committed
}
// Perform PHI construction.
Chris Lattner
committed
Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
LI->replaceAllUsesWith(V);
if (isa<PHINode>(V))
V->takeName(LI);
Duncan Sands
committed
if (V->getType()->isPointerTy())
MD->invalidateCachedPointerInfo(V);
Chris Lattner
committed
markInstructionForDeletion(LI);
++NumPRELoad;
return true;
}
/// processLoad - Attempt to eliminate a load, first by eliminating it
/// locally, and then attempting non-local elimination if that fails.
bool GVN::processLoad(LoadInst *L) {
if (!MD)
return false;
if (L->isVolatile())
Owen Anderson
committed
return false;
if (L->use_empty()) {
markInstructionForDeletion(L);
return true;
}
Owen Anderson
committed
// ... to a pointer that has been loaded from before...
MemDepResult Dep = MD->getDependency(L);
// If we have a clobber and target data is around, see if this is a clobber
// that we can fix up through code synthesis.
if (Dep.isClobber() && TD) {
// Check to see if we have something like this:
// store i32 123, i32* %P
// %A = bitcast i32* %P to i8*
// %B = gep i8* %A, i32 1
// %C = load i8* %B
//
// We could do that by recognizing if the clobber instructions are obviously
// a common base + constant offset, and if the previous store (or memset)
// completely covers this load. This sort of thing can happen in bitfield
// access code.
Value *AvailVal = 0;
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst())) {
int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
L->getPointerOperand(),
DepSI, *TD);
if (Offset != -1)
AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset,
L->getType(), L, *TD);
}
// Check to see if we have something like this:
// load i32* P
// load i8* (P+1)
// if we have this, replace the later with an extraction from the former.
if (LoadInst *DepLI = dyn_cast<LoadInst>(Dep.getInst())) {
// If this is a clobber and L is the first instruction in its block, then
// we have the first instruction in the entry block.
if (DepLI == L)
return false;
int Offset = AnalyzeLoadFromClobberingLoad(L->getType(),
L->getPointerOperand(),
DepLI, *TD);
if (Offset != -1)
Chris Lattner
committed
AvailVal = GetLoadValueForLoad(DepLI, Offset, L->getType(), L, *this);
// If the clobbering value is a memset/memcpy/memmove, see if we can forward
// a value on from it.
if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
L->getPointerOperand(),
DepMI, *TD);
if (Offset != -1)
AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, *TD);
}
if (AvailVal) {
DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
<< *AvailVal << '\n' << *L << "\n\n\n");
// Replace the load!
L->replaceAllUsesWith(AvailVal);
Duncan Sands
committed
if (AvailVal->getType()->isPointerTy())
MD->invalidateCachedPointerInfo(AvailVal);
Chris Lattner
committed
markInstructionForDeletion(L);
++NumGVNLoad;
return true;
}
}
// If the value isn't available, don't do anything!
if (Dep.isClobber()) {
DEBUG(
// fast print dep, using operator<< on instruction is too slow.
dbgs() << "GVN: load ";
WriteAsOperand(dbgs(), L);
Instruction *I = Dep.getInst();
);
}
if (Dep.isUnknown()) {
DEBUG(
// fast print dep, using operator<< on instruction is too slow.
dbgs() << "GVN: load ";
WriteAsOperand(dbgs(), L);
dbgs() << " has unknown dependence\n";
);
return false;
}
// If it is defined in another block, try harder.
return processNonLocalLoad(L);
assert(Dep.isDef() && "Expecting def here");
Instruction *DepInst = Dep.getInst();
if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
Value *StoredVal = DepSI->getValueOperand();
// The store and load are to a must-aliased pointer, but they may not
// actually have the same type. See if we know how to reuse the stored
// value (depending on its type).
if (StoredVal->getType() != L->getType()) {
if (TD) {
StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
L, *TD);
if (StoredVal == 0)
return false;
DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
<< '\n' << *L << "\n\n\n");
}
else
return false;
}
L->replaceAllUsesWith(StoredVal);
Duncan Sands
committed
if (StoredVal->getType()->isPointerTy())
MD->invalidateCachedPointerInfo(StoredVal);
Chris Lattner
committed
markInstructionForDeletion(L);
++NumGVNLoad;
return true;
}
if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
Value *AvailableVal = DepLI;
// The loads are of a must-aliased pointer, but they may not actually have
// the same type. See if we know how to reuse the previously loaded value
// (depending on its type).
if (DepLI->getType() != L->getType()) {
if (TD) {
AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(),
L, *TD);
if (AvailableVal == 0)
return false;
DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
<< "\n" << *L << "\n\n\n");
}
else
return false;
L->replaceAllUsesWith(AvailableVal);
Duncan Sands
committed
if (DepLI->getType()->isPointerTy())
MD->invalidateCachedPointerInfo(DepLI);
Chris Lattner
committed
markInstructionForDeletion(L);
++NumGVNLoad;
Owen Anderson
committed
}
// If this load really doesn't depend on anything, then we must be loading an
// undef value. This can happen when loading for a fresh allocation with no
// intervening stores, for example.
Victor Hernandez
committed
if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) {
L->replaceAllUsesWith(UndefValue::get(L->getType()));
Chris Lattner
committed
markInstructionForDeletion(L);
++NumGVNLoad;
}
Owen Anderson
committed
// If this load occurs either right after a lifetime begin,
// then the loaded value is undefined.
Chris Lattner
committed
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(DepInst)) {
Owen Anderson
committed
if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
L->replaceAllUsesWith(UndefValue::get(L->getType()));
Chris Lattner
committed
markInstructionForDeletion(L);
++NumGVNLoad;
return true;
}
}
Owen Anderson
committed
}
Owen Anderson
committed
// findLeader - In order to find a leader for a given value number at a
// specific basic block, we first obtain the list of all Values for that number,
// and then scan the list to find one whose block dominates the block in
// question. This is fast because dominator tree queries consist of only
// a few comparisons of DFS numbers.
Owen Anderson
committed
Value *GVN::findLeader(BasicBlock *BB, uint32_t num) {
LeaderTableEntry Vals = LeaderTable[num];
Owen Anderson
committed
if (!Vals.Val) return 0;
Owen Anderson
committed
Owen Anderson
committed
Value *Val = 0;
if (DT->dominates(Vals.BB, BB)) {
Val = Vals.Val;
if (isa<Constant>(Val)) return Val;
}
Owen Anderson
committed
LeaderTableEntry* Next = Vals.Next;
Owen Anderson
committed
while (Next) {
Owen Anderson
committed
if (DT->dominates(Next->BB, BB)) {
if (isa<Constant>(Next->Val)) return Next->Val;
if (!Val) Val = Next->Val;
}
Owen Anderson
committed
Owen Anderson
committed
Next = Next->Next;
Owen Anderson
committed
}
Owen Anderson
committed
return Val;
Owen Anderson
committed
}
Owen Anderson
committed
Owen Anderson
committed
/// processInstruction - When calculating availability, handle an instruction
Owen Anderson
committed
/// by inserting it into the appropriate sets
bool GVN::processInstruction(Instruction *I) {
// Ignore dbg info intrinsics.
if (isa<DbgInfoIntrinsic>(I))
return false;
// If the instruction can be easily simplified then do so now in preference
// to value numbering it. Value numbering often exposes redundancies, for
// example if it determines that %y is equal to %x then the instruction
// "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
if (Value *V = SimplifyInstruction(I, TD, DT)) {
I->replaceAllUsesWith(V);
if (MD && V->getType()->isPointerTy())
MD->invalidateCachedPointerInfo(V);
Chris Lattner
committed
markInstructionForDeletion(I);
return true;
}
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
if (processLoad(LI))
return true;
unsigned Num = VN.lookup_or_add(LI);
addToLeaderTable(Num, LI, LI->getParent());
return false;
Owen Anderson
committed
}
Owen Anderson
committed
// For conditions branches, we can perform simple conditional propagation on
// the condition value itself.
if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
return false;
Value *BranchCond = BI->getCondition();
uint32_t CondVN = VN.lookup_or_add(BranchCond);
BasicBlock *TrueSucc = BI->getSuccessor(0);
BasicBlock *FalseSucc = BI->getSuccessor(1);
if (TrueSucc->getSinglePredecessor())
Owen Anderson
committed
addToLeaderTable(CondVN,
Owen Anderson
committed
ConstantInt::getTrue(TrueSucc->getContext()),
TrueSucc);
if (FalseSucc->getSinglePredecessor())
Owen Anderson
committed
addToLeaderTable(CondVN,
Owen Anderson
committed
ConstantInt::getFalse(TrueSucc->getContext()),
FalseSucc);
return false;
}
Owen Anderson
committed
Owen Anderson
committed
// Instructions with void type don't return a value, so there's
// no point in trying to find redudancies in them.
if (I->getType()->isVoidTy()) return false;
Owen Anderson
committed
uint32_t NextNum = VN.getNextUnusedValueNumber();
unsigned Num = VN.lookup_or_add(I);
Owen Anderson
committed
// Allocations are always uniquely numbered, so we can save time and memory
// by fast failing them.
if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) {
Owen Anderson
committed
addToLeaderTable(Num, I, I->getParent());
Owen Anderson
committed
return false;
Owen Anderson
committed
}
Owen Anderson
committed
// If the number we were assigned was a brand new VN, then we don't
// need to do a lookup to see if the number already exists
// somewhere in the domtree: it can't!
Owen Anderson
committed
addToLeaderTable(Num, I, I->getParent());
Owen Anderson
committed
// Perform fast-path value-number based elimination of values inherited from
// dominators.
Owen Anderson
committed
Value *repl = findLeader(I->getParent(), Num);
if (repl == 0) {
// Failure, just remember this instance for future use.
Owen Anderson
committed
addToLeaderTable(Num, I, I->getParent());
Owen Anderson
committed
}
// Remove it!
I->replaceAllUsesWith(repl);
if (MD && repl->getType()->isPointerTy())
MD->invalidateCachedPointerInfo(repl);
Chris Lattner
committed
markInstructionForDeletion(I);
Owen Anderson
committed
}
/// runOnFunction - This is the main transformation entry point for a function.
if (!NoLoads)
MD = &getAnalysis<MemoryDependenceAnalysis>();
DT = &getAnalysis<DominatorTree>();
TD = getAnalysisIfAvailable<TargetData>();
VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
VN.setMemDep(MD);
VN.setDomTree(DT);
bool Changed = false;
bool ShouldContinue = true;
Owen Anderson
committed
// Merge unconditional branches, allowing PRE to catch more
// optimization opportunities.
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
BasicBlock *BB = FI++;
bool removedBlock = MergeBlockIntoPredecessor(BB, this);
if (removedBlock) ++NumGVNBlocks;
Owen Anderson
committed
}
DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
ShouldContinue = iterateOnFunction(F);
if (splitCriticalEdges())
ShouldContinue = true;
Changed |= ShouldContinue;
Owen Anderson
committed
if (EnablePRE) {
bool PREChanged = true;
while (PREChanged) {
PREChanged = performPRE(F);
Owen Anderson
committed
}
// FIXME: Should perform GVN again after PRE does something. PRE can move
// computations into blocks where they become fully redundant. Note that
// we can't do this until PRE's critical edge splitting updates memdep.
// Actually, when this happens, we should just fully integrate PRE into GVN.
cleanupGlobalSets();
bool GVN::processBlock(BasicBlock *BB) {
// FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
// (and incrementing BI before processing an instruction).
assert(InstrsToErase.empty() &&
"We expect InstrsToErase to be empty across iterations");
bool ChangedFunction = false;
for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
BI != BE;) {
ChangedFunction |= processInstruction(BI);
if (InstrsToErase.empty()) {
// If we need some instructions deleted, do it now.
NumGVNInstr += InstrsToErase.size();
// Avoid iterator invalidation.
bool AtStart = BI == BB->begin();
if (!AtStart)
--BI;
for (SmallVector<Instruction*, 4>::iterator I = InstrsToErase.begin(),
E = InstrsToErase.end(); I != E; ++I) {
DEBUG(dbgs() << "GVN removed: " << **I << '\n');
if (MD) MD->removeInstruction(*I);